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INTOPLANE'I!ARYATMoGPE3RES 

ByDeanR. Chapman 

The pair of motion equations for entry into an exponential planetary 
atmosphere is reduced to a single, ordinary, nonlinear differential equa- 
tion of second order by disregarding two relatively small terms and by 
introducing a certain mathematical transformation. The reduced equation 
includes various terms, certain of which represent the gravity force, the 
centrifugal acceleration, and the lift force. If these particular terms 
are disregarded, the differential equation is linear and yields precisely 
the solution of Allen and Eggers applicable to ballistic entry at rela- 
tively steep angles of descent. If all the other terms in the basic 
equation sre disregarded (corresponding to negligible vertical accelera- 
tion and negligible vertical component of drag force), the resulting 
truncated differential equation yields the solution of S'&er for equi- 
librium flight of glide vehicles with relatively large lift-drag ratios. 

A number of solutions for lifting and nonlifting vehicles entering 
at various initial angles also have been obtained from the complete non- 
linear equation. These solutions are universal in the sense that a single 
solution determines the motion and heating of a vehicle of arbitrary 
weight, dimensions, and shape entering an arbitrary planetary atmosphere. 
One solution is required for each lift-drag ratio. These solutions are 
used to study the deceleration, heating rate, and total heat absorbed for 
entry into Venus, Earth, Mars, and Jupiter. From the equations developed 
for heating rates, and frcxn available information on human tolerance 
limits to acceleration stress, approximate conditions for minimizing the 
aerodynamic heating of a trimmed vehicle with constant lift-drag ratio 
are established for several types of manned entry. A brief study is 
included of the process of atmosphere braking for slowing a vehicle from 
near escape velocity to near satellite velocity. 

INTRODUCTION 

One of the many challenging problems connected with space flight 
occurs during the terminal phase of operation when a vehicle at near 
orbital velocity enters the earth's atmosphere or the atmosphere of 
another planet. Same important aspects of this problem are the possibly 
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severe decelerations for human occupants, the intense aerodynamic heating, 
and the tactical aspect of having satisfactory control over both the time 
and location of landing. The problem is made more interesting by inter- * 
relationships between these aspects which require, as always, keen under- 
standing in order to make the best design compromises. For example, the L 
lowest heating rates and smallest decelerations are obtained with very 
shallow entry paths, such as would be obtained by letting an orbit 
gradually decay; hut the tactical aspects of fixing the time and location 
of a vehicle upon landing are most difficult with these very shallow - 
re-entries. Also, the total heat absorbed during descent is greater for 
shaXLow entries than for steep ones. If descent at a steeper angle is 
induced by deflecting the orbit, such as by means of a retrorocket, then 
the total heat absorbed for laminar flow is reduced substantially, and 
the time and location aspects of recovery are improved, but both the 
deceleration and the heating rate are increased. In order to devise an 
efficient method of entry for a given application, it is highly des-irable 
that a designer have available relatively simple equations for computing -- 
how each variable at his disposal affects the entry trajectory, the 
deceleration, and the aerodynamic heating. 

For several special types of entry, analytical theories are available 
which provide sFmple equations showing clearly how each variable affects 
the motion and aerodynamic heating. In the case of. ballistic-type entry 
without lift at sufficiently steep angles that the gravity and centrifugal 
forces can be disregarded, the analysis of Allen and Eggers (ref. 1) 
provides such equations. In the case of smoothly gliding-type entry at 
zero initial angle with a sufficiently large lift-drag ratio that the 
vertical acceleration snd the vertical component of drag force can be 
disregarded, the analysis originally given by S-tiger (refs. 2 and 3) would 
be applicable. In the case of skipping vehicles entering at sufficiently 
steep angles and with a sufficiently large lift-drag ratio that the 
gravity and centrifugal forces can be disregarded, the analysis of Eggers, 
Allen, and Neice (ref. 4) would apply. For more general types of entry, 
though, where the gravity force, centrifugal force, lift force, vertical 
acceleration, and vertical component of drag are all of importance, these 
existing analyses would not apply. Such would be the case, for example, 
for the entry of a satellite with a small lift-drag ratio, or for the 
entry of any orbiting vehicle starting with a very small initial angle. 
As a result, present understanding of the relatively shsllow entries - 
which are of special interest to manned space flight - is based primarily 
on numerical calculations made with computing machines in connection with 
relatively spectiic vehicles (see, e.g., refs. 5, 6, and 7). 

s! 

c 

- 

The objective of the present report is to develop an approximate 
-. analytical solution to the motion equations which is usable for engineer- 

ing calculations and which is applicable to an arbitrary planetary atmos- - 
phere, to a lifting or nonlifting vehicle, and to entries along either- ; 
shallow or steep descents. Such a solution could be applied to a fairly 
broad variety of vehicles, such as skip, glide, satellite, ballistic, or .- z . 
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escape vehicles undergoing the process of atmosphere braking. An addi- 
tional objective is to develop a method applicable to composite types of 
entry, such as entering initially with zero lift, and then suddenly chang- 
ing the lift and/or drag at any number of points during the descent. 

During the preparation of this report an interesting report by Gazley 
(ref. 8) became available in which he considers the entry of a nonlifting 
satellite into a planetary atmosphere from a decaying orbit. He obtains 
an approximate analytic solution by making an arbitrary assumption about 
the relationship between velocity and angle of descent which is not made 
in the present report. As a result, his end equations for this particular 
type of entry are quantitatively different, though qualitatively similar 
to those of the present report, as-discussed briefly later. 

NOTATION 

a resultant deceleration 

A reference area for drag and lift, sq f-t 

0 dimensional constant in heat-transfer equations 
(17,000 Btu ft'3/2sec' 1 for numerical calculations of this report) 

CD drag coefficient, 1 
p paiFA 

CL lift coefficient, 1 L 

p P,-A 

D drag force, lb 

Q gravitational acceleration, ft secm2 

Qc gravitational conversion constant, 32.2 ft secm2 

kl ratio of local heat flux to that at a stagnation point, 
9s 

kz average value of heat flux relative to stagnation point value, 
1 
zr s 

2 characteristic length of vehicle, ft 
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lift force, lb 

mass of vehicle, slugs 

mean molecular weight of planetary atmosphere (consistent units 
with gas constant and g) 

Prandtl number 

convective heat-transfer rate per unit area, Btu/sq ft set 

total convective heat absorbed, 
J- 

q dt dS, Btu 

dimensionless function proportional to heating rate (u 5'2fi for 
laminar flow) 

dimensionless function proportional to total heat absorbed 

u 
ES/ 2 z-3-f 2cos-2 

(Pm 
> 

distance from planet center, ft 

universal gas constant, or radius 
in feet 

Pm-2 
Reynolds number, - 

ka 

of curvature of vehicle surface 
Y 

f-f- circumferential distance traveled, LV 

surface area wetted by boundary layer, sq ft 

time, set 

temperature (various units employed) 

circumferential velocity component normal to radius vector, ft/sec 

circular orbital velocity, G, ft/sec ~ 

ratio, -% 
UC 

upper limit for range and total heat absorbed (see eqs. (28) and 
(39) 1 

altitude, ft 

- 



JXACATN42'76 5 

vertical velocity component (along direction of radius vector), ft/sec 

resultant velocity, jm 

weight of vehicle at earth's surface, mg,, lb 

dimensionless function of u determined by equation (2l) and 
appropriate boundary conditions 

atmospheric density decay parameter, ft" 

ratio of specific heats behind bow wave 

angle in polar coordinates 

coefficient of viscosity, slug ft'lsec'l 

density, slug f-t-z 

flight-path angle relative to local horizontal direction; positive 
for climbing flight, negative for descent 

Subscripts 

0 sea level. 

03 free stream 

S stagnation potit 

i initial condition 

b break where W - is discontinuously changed 
CDs 

e relative to earth 

Superscripts 

t differentiation with respect to u 

mean value for exponential. approximation to atmosphere density- 
altitude relationship, or dimensionless quantity 
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ANALYSIS 

Assumptions and ApproxTmations 

The problem analyzed concerns that portion of the descent of a 
vehicle into a planetary atmosphere wherein the decelerations and the 
convective aerodynamic heating are dominant. Three assumptions made at 
the outset are: 

(i) Atmosphere and planet are spherically symmetric. 

(ii) Atmosphere density po3 varies exponentially with altitude. 

(iii) Peripheral velocity of planet is negligible compared to the 
velocity of the entering vehicle. 

Assumption (i) is reasonable for those planets which have only small 
equatorial bulges (such as Venus, Earth, and Mars), inasmuch as the severe 
aerodynamic heating and decelerations occur over a length of flight path 
which is smsll compared to the planet's mean radius (the order of 
one tenth the planet radius for nonlifting bodies). The assumption of 
spherical symmetry, however, would not be as reasonable for planets with- 
relatively large equatorial bulges, such as Jupiter and Saturn. As noted 
later, this assumption of spherical symmetry can introduce some inaccuracy 
if the descent is nearly along a line of longitude and if the vehicle also 
happens to have a relatively large lift-drag ratio. For large lift-drag 
ratios the important deceleration and heating portions of the descent can 
be prolonged over a distance comparable to the plenet's radius; hence, 
the nonspherical nature of the atmosphere could be important in such 
cases. 

v 

. . 
- 

Assumption (ii), of an exponential atmosphere, is based upon the 
simple kinetic theory of an isothermal gas in a uniform gravitational 
field. This theory yields the well-known exponential approximation for 
atmospheres (see ref. 9, ch. III, for example) 

-- 

PC3 e = e-BY 
PO 

where 

(1) 

and where 3 is the mean molecular weight of the planetrs atmosphere, 
T the mean temperature, R the universsl gas constant, and g the local 
acceleration due to gravity. It is to be noted that PO represents the 

. 

.- 

” 
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intercept of the straight line which best fits a curve of log p versus 
altitude, and is not the same as the true sea level density po. From 
data such as presented in references 10 and IL, approximate mean values 
of several quantities of interest for various planets are as follows 
(the subscript 8 designates a value relative to the earth): 

The exponential approximation for the earth (with F. = 0.0027 slug ft-s) 
is compared in figure 1 with the relatively recent (19%) ARE model of 
the atmosphere. It is evident that a single value for B appears to be 
a reasonable approximation at altitudes below about 400,000 feet (80 miles, 
=iW.y) . In most cases peak decelerations and maximum aerodynamic heating 
occur well below this altitude. Moreover, the region of most Important 
heating and deceleration for a given vehicle occurs only over a relatively 
thin strip of altitude (very roughly over a 70,000-foot strip across which 
the density changes by about a factor of 20). Since the analysis which 
follows enables the altitude of this important strip to be calculated 
quickly for any given vehicle, the exponential decay parameter p in each 
case could be selected, if desired, as corresponding to this particular 
altitude rather than to the mean value tabulated above. A plot of the 
dimensionless parameter e as a function of altitude is shown in fig- 
ure 2 for the ARE model atmosphere. In determining fi consideration 
is given only to the 70,000-foot region of air immediately above a given 
altitude. The fluctuations in ../j5! for this standard atmosphere below 
about 400,000 feet amount to the order of 510 percent from a mean value 
of 30 and are attributed primarily to the variation in temperature with 
altitude. Inasmuch as variations in temperature with season and with 
,latitude (see ref. 12, for example) can fluctuate the order of kl5 percent, 

--l/2 the parameter fi- T can fluctuate about 77 percent. For most numer- 
ical calculations in this report, a constant value G = 30 is used for 
the earth's atmosphere corresponding to a mean atmospheric temperature of 
240' K (432' R). 

Assumption (iii), that the peripheral velocity of the planet is 
negligible compared to the velocity of the entering vehicle, would not 
introduce significant errors for most descents into most planetary atmos- 
pheres. For descents nearly along a line of longitude, the errors in heat 
transfer and deceleration would, of course, be negligible. The greatest 
error would occur in an equatorial descent. As a measure of this error, 
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we can take the ratio of the equatorial peripheral velocity up of the 
planet to the circular satellite velocity uc. This ratio for several 
planets is as follows: 

UP/UC 

Venus 
Earth 
MSXS 
Jupiter 

Hence the error introduced by assuming a nonrotating atmosphere in the 
case of near-equatorial descents would be negligible for Venus, appreci- 
able though not large for Earth and Mars, but probably significant for 
Jupiter. 

In addition to these three physical assumptions, two mathematical 
approximations are made in the develoment of the subsequent analysis in 
order to effect major simplifications in the structure of the equations 
of motion. They are mentioned here for convenience: 

- 
-- 

(a) In a given increment of time, the fractional change in distance 
from the planet center, dr/r, is small compared to the fractional 
change in velocity du/u; that is, I&c/r I< < ldu/ul. 

(b) For lifting vehicles, the flight-path angle Cp relative to the 
local horizontal direction is sufficiently small that the component 
of lift in the horizontal direction is small compared to the drag; 
that is, I(L/Dbn 'PI << 1. 

For nonlifting vehicles (e.g., ballistic entry), approximation (b) 
is automatically satisfied; approximation (a) does not specifically 
restrict the descent angle (O" to go0 can be analyzed for nonlifting 
vehicles), but it does restrict the analysis to a -Ijortion of the over-all 
trajectory below an upper altitude limit. Above some altitude dr/r 
cannot be small compared to du/u, as is shown to be the case on mathe- 
matical grounds in appendix A. Physically,-this is clear from the law 
of conservation of angular momentum which states that in the absence of 
drag, d(mur) = 0, or dr/r = -du/u. Consequently, the present solution 
would be reasonable at least below an altitude where drag has slowed down 
a vehicle slightly to some point (A in sketch) where dr/r 3 0.1 du/u. 
It is shown in appendix B that this corresponds'to the point where drag 
has reduced the vehicle velocity by about 0.01 of the initial velocity. 
Above this altitude (point A), orbit-type _calculations could be applied, 
A method for joining the present solution to Keplerian ellipses is 
discussed in appendix B. 

iThis value may be a factor of ten higher due to the uncertainty in 

-. 

- 

-. 

the length of the Venus day. L 
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For lifting vehicles (e.g., skip or gliding entry) assumption (b) 
clearly restricts the analysis to smsll angles of descent. Evenif a 
lifting vehicle starts entry horizontally, the angle of descent will 
increase as the velocity is reduced (and as the centrifugal. forces are 
diminished) until (L/D)ten cp becomes unity in the terminal subsonic 
gliding hase. 
when (L D)tanlql P 

Although the solution is not vtiid, strictly speaking, 
is comparable to unity, a reasonable over-all trajectory 

would be obtained by stopping the present solution at the point where 
-(L/D)- cp = 1 (point B in above sketch), and considering that 
-(L/D)tan cp = 1 thereafter. As sketched, peak heating and maxm decel- 
eration occur well within the range (solid line) where the present solu- 
tion applies. 

The limitations resulting from approximations (a) and (b) are 
examined in appendix A, where it is shown that for vehicles entering from 
decaying satellite orbits, with or without positive lift, the errors 
introduced are only the order of a few percent insofar as aer&ynsmic 
heating and peak decelerations are concerned. Surprisingly small errors 
result from approximation (b), even for very large L/D ratios, because, 
in orbital decay or in a smooth glide, the larger the L/D the smaller 
the angle Cp at conditions near maximum heating and peak deceleration; 
this keeps the product (L/D)tan cp small. 

Various modes of entry and the portions of the trajectories of 
satellite, ballistic, escape, glide, and skip vehicles to which the anal- 
ysis applies are sketched in figure 3. 
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. 
Descent in a spherically symmetric atmosphere about a spherically 

symmetric planet would occur in a meridian plane in the absence of later&l 
forces. This confines the problem to one of.-two dimensions for which 
polar coordinates (r, 0) are convenient. The velocity components are 
(v, u), respectively, as sketched below. 

Flight path 

The vector acceleration in terms of the unit vectors & and ze for polar 
coordinates is - 

(3) 

where ?$ and &I are the unit vectors in the r and 6 directions, 
respectively. The local. flight-path angle cp (negative for descent) is 

tancq=; (4) 

The vector aerodynamic force 

3 = (-W + L ~08 up - D sin Cp)Tr - (D COB cp + L sin cp)& (5) 
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must equal the mass m times the vector acceleration in the absence of 
thrust-type forces. Eence, equations (3), (4), and (5) yield two com- 
ponent equations of motion 

xY=-~=@;-uz-~c0srp++ql 
dt2 r 

(7) 

It is noted that g and r are local values in these equations. 

We will solve this system of equations by disregarding the term 
uv/r in equation (7) (which, as will be evident shortly, is equivalent 
to assumption (a) that Idr/rl<<ldu ~1). This restricts the solutions 
to problems wherein ]uv/rl<< ldu/dt { , but the restriction is not serious 
for the aerodynamic heating and deceleration aspects of entry. In the 
case of orbital. entry, for example, maximum deceleration and heating 
occur at such smsll angles that uv/r is the order of 1 percent of 
(see appendix A). 

du/dt 
An alternate view of what the approximation involves 

can be seen as follows: 

-= G I I 
r du 

I I dt 

dx I I -77 =- 
dU 

I I 11 

<< 1. (8) 

Consequently, the disregard of uv/r is precisely equivalent to approx- 
imation (a) mentioned earlier; namely, that the percentage change in 
distance from the planet center is small compared to the percentage change 
in velocity. We will employ this approximation several times more in the 
analysis. Inasmuch as du/u is relatively large only when the drag is 
important, it is understandable why the basic approxtition Idr/rl<<idu/ul 
yields results applicable to regions of Important deceleration and aero- 
dynsmic heating, but not to the outer regions of space where orbit-type 
calculations (which do not neglect the acceleration term uv/r compared 
to du/dt) are necessary to describe the motion of a vehicle. In these 
outer regions, radiant heat dominates, while convective heating and 
deceleration are very sma2.l. 

my utilizing approximation (a) (inequality (8)), we have 

du 
at= (9) 

. 
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so that, by introducing the drag coefficient, the exponential approximation 
-ttyVatmOsphere, and approximation (b) (](L/D)tan cp 1 <cl), and noting 

= u/cos CPY 

du Foe -By u2 

z=- CO8 cp 

We will select as an independent variable 

(10) 

representing the ratio of horizontal velocity to the local circular 
satellite velocity. The basic approximation (8) taken together with the 
relation dg/g = -2dr/r resulting from Newtones gravitational law enables 
us to disregard derivatives of both g and rrelative to derivatives of 
either u, or E; for example, 

du &pEi -d(mt) 
dt - dt dt 

G9 
. 

my introduction of the drag coefficient, the motion equation (6) for an 
exponential atmosphere becomes 

1 dv -1d2Y=l4J& -2 

YE= g dt2 (13) 

In order to reduce the pair 
single equation, we transform to 
Z defined by 

of motion equations (10) and (13) to a 
a new dimensionless dependent variable 

-. 

(14) 

and employ ii as the independent variab1e.s Thus, by differentiating 
(zt E dZ/dc) and keeping in mind the basic approximation (8) ..I. - 

2The author knows of no simple way to explain a priori why this coor- 
dinate system Z(E) should be introduced. It was discovered by trial and 
error after trying various other transformed coordinate systems which did 
not reduce the pair of motion equations to a single equation. 



NACA TN 4276 13 

Z’ z PO m 
---=-a 
E ii2 2m 

( 1 

e-PY dy 
aii 

We see from equations (10) and (12) that 

--=-&QL dii 
AC 
u.b cos cp 

so that substitution into equation 
dy/dt = v = TiGtancp yields 

(15) and noting that 

Z’-5 gy-z= J 
B ~0s cp dy 

U 
JE sin cp 

(15) 

(la 

(1-7) 

Proceeding now by differentiation of v and sin cp from equation (17), 
there results 

The term dcp/dE representing flight-path curvature can be pressed in 
several ways in terms of the 
and (12) that 

Z function by noting from equations (17) 

Alternate forms of 
= -a" -zl+g 

U 
terms representing 09) 
flight-path curvature 

Consequently, we can substitute the first form of this equation, together 
with equation (16) into equation (18) to obtain 
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. 

- 1 dv ld? iiZ -5=---z- 
is dt Q dt2 cos%p 

+ taa2c&[ii+ (Z1 - $)I} (l8a) 

We note from equations (14) and (17) that equation (13) can be written 
in the form 

1 dv l@Y 1-c2+ iiz 
'Zat"--= e; dt2 cos2ql 

Hence, by comparing this equation with equation (l8a), snd by observing 
from the second form of equation (19) that 

the final equation for the Z function is obtained. 

co&p = 0 (21) 

In this equation, cos cp = dl - sin~cp can be expressed in terms of Z' 
and Z through equation (17) 

J&incp=Z’-; (17) 

Thus,~ the pair of motion equations has been reduced to a single, second- 
order differential equation by using iTi as the independent variable and 
Z as the dependent variable. 3 For nonlifting vehicles (L/D = 0) the 
equation is applicable to large sngles of descent as well as sm.&l. For 
lifting vehicles it is applicable for I(L/D)tan cpl<< 1. In sU cases it 
is applicable when /dr/rI/ldu/ul<<l. W e note from equations (4) and (16) 
that 

%!learly, the same reduction would be achieved by using g(u) as the 
independent variable and Zh(ii) as the dependent variable, where g(E) 
and h(3) are arbitrary functions. 
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wr uv/r -E sin cp -z-z 
du/u du/dt JEZ 

(22) 

As noted in appendix A, the ratio [dr/rl/[du/ul is less than 0.1 below 
the altitude where drag has reduced the velocity by about 1 percent of the 
initial velocity. 

The nonlinearity of equation (2l) is due to the term (1-ii2)cos4!?/GT 
which represents the effects of gravity and centrifugal forces in inducing 
a curved flight path. It is noted that the basic equation is independent 
of the physical characteristics CD, W, A of the vehicle as well as 
independent of the sea-level characteristics -F. and go. 
occurs only in the combined parameter fi L/D. 

Aerodynamic lift 
The equation has a singu- 

larity at Z = 0 which must be handled analytically in numerical methods. 
A method of solving this equation is discussed in appendix D. 

It is instructive to consider the physical meaning of each of the 
terms in the differential equation (2l). Fquations (19) and (20) help 
in this regard. 

-i&11 - p-2 ( > 
l-ii2 = 

U TZT 
cos*cp - qr 2 co&p 

D 
@la) 

vertical vertical component gravity minus lift force 
acceleration of drag force 

NE sfh 0) 
centrifigal force 

By understanding the physical significance of the various terms one can 
judge, for example, what terms to consider in obtaining special approxi- 
mate solutions. 

Since the basic differential equation is of second order, we need 
two initial conditions to complete the system. We take these at some 
initial velocity Ui, and write as generalized initial conditions 

z(iq = q Z’ (Q) 3 Zi’ 

If the vehicle starts at a very high altitude where the density is negli- 
gible compared to that near peak heating, then the definition (14) 

. zi =(yg Jpipi (244 
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shows that Zi is very small in such cases. For simplicity we take 
zi = 0 for entries starting at very high altitudes. The equation 

(24b) 

shows that Zif would be equal to a sin Cpi when Zi = 0. As an 
example, entry from a decaying satellite orbit (cpi = 0 and iii = 1 in the 
stage of decay before appreciable aerodynamic heating begins), would be 
represented by the initial conditions 

Zi(l) = 0 Zi'(1) = 0 (25) 

One universal Z function would be required for each value of the 
parameter a L/D appearing in the differential equation (2l). 

By allowing Zir to take on values other than zero and allowing ci 
to be either less than or greater than unity, we can obtain the corre- 
sponding Z functions for ballistic, glide, skip, or escape vehicles 
entering a planetary atmosphere from very high altitudes. By further 
allowing a to be other than zero, corresponding Z functions can be 
obtained for entry starting from an initial altitude where the density 
may not be negligible compared to that near peak heating. Before present- 
ing some solutions to equation (U), though, it is advantageous to show -- 
how the Z functions, once computed, can ra@dly be used to determine a 
number of useful quantities in practical calculations. 

Summary of Some Useful Quantities Related to the Z Function 

From the Z functions, it is a relatively simple matter to obtain, 
for example, the horizontal component of deceleration 88 by using 
equations (3), (12), and (16), 

qZ-du= g 4.E iiz 
dt CO8 cp (26) 

or 

1 du -z3oEz 
- g dt for Earth, cp small 

Strictly speaking, g and r are local values in the outer layers of the 
atmosphere where the deceleration takes place. For Earth, however, these 
are not significantly different from their respective surface-level 
values. Local and surface values might be greatly different, though, for 
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c 

planets such as Jupiter and Saturn which are believed to have a very deep 
atmosphere. The equation for the angle of descent (Cp<O for descent) is, 
from equation (17), 

sin cp = 
Z’ - (z/q 

6 
(27) 

* Z’ - om for Barth 
30 

The circ&erential distance traveled between a point where the dimension- 
less velocity is ii-1 and a point where it is & can be expressed in 
terms of z from equation (16), 

As 1 
s 

ii2 
- =- 
r r 

El 
u g dii 

or 

L&l 
s 

El 
-g- d; 
r 30 y,i2 -F 

for Earth, cp small 

inasmuch as the anslysis is not valid in a very small neighborhood of 
z= 0 where 6 = Ci, but becomes valid sfter drag has reduced u by less 
than 1 percent (as shown In appendix B), we select an upper limit such as 
Cl = 0.995 Ui or 31 = 0.99 6i for the entry range. -In a practical appli- 
cation, this range would have to be joined to the range of the appropriate 
Keplerian ellipse in order to obtain the total range. The corresponding 
time elapsed is obtained &so with the aid of equation (16) 

t= -=1 s ds 
s 

Cl CO6 cp Kl 
U 

4% ii2 iiz 
E 27.0 

s 
=1 dc 

ii2 
Ez 

s'ec for Earth, cp small, g Z go 

Another useful quantity is the density ratioz referred to the true sea- 
level density (p. = 
tion (14) for Z 

0,00238 slug ft-a), which comes from the defini- 
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(3% 

or 

for Earth, $ in lb ftw2 

The left side of this last equation is a function only of the altitude 
for a given atmosphere (fi for the ARDC model atmosphere is shown in 
fig. 2), so that it provides for a given Z(c) function the sltitude- 
velocity relationship for any model atmosphere. The density ratio 
referred to the effective sea-level density (F. = 0.002‘j') which best fits 
the p(y) curve is 

= 3.2 for Earth, in lb ft-=, 6 = 30 

The dynamic pressure is 

(3W 

.(32) ' 

for Earth, w 
%A 

in lb ftS2, cp small 

and the free-stream Reynolds number per unit length is proportional to 
Z (es. 14)) 

Rem VP, 
- = - = 2 kl 

s 
(33) 

W .for earth;cp small, - 
w 

in lb ftm2 
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c 

The viscosity of air at the mean atmospheric temperature F =.432' R is 
employed to obtain the constant in this last equation which is valid only 
for the earth's atmosphere. 

It is interesting that the Reynolds numbers involved during entry 
from a decaying satellite orbit are relatively small. Near peak heating, 
for example, we will see subsequently that the value of Z ranges from 
about 0.17 to 0.015, for L/D ratios between 0 and 1, so the correspond- 
ing Reynolds numbers are of the order of 1000(W/C~A) to ~OO(W/CDA) per 
foot. These are sufficiently small for one to be optimistic about the 
practical possibilities of maintaining laminar flow for shallow entry 
from a satellite orbit. For steep entries, as for ballistic vehicles, 
the Z function is larger, and hence the corresponding Reynolds numbers 
are larger. Curves illustrating this are presented later. 

Fairly simple expressions also can be obtained for the aerodynamic 
heating rate per unit area (q) and the total heat absorbed per unit area 
Q/S. Following the analysis of Lees (ref. 13), we will consider the 
heating rate at any point on a body to be a certain fraction 

of the heating rate s, at a stagnation 
The heating rate in hypersonic flow at a 
expressed as 

where the constants C, n, and m depend 
For laminar flow we have n = 112 

on the type of boundary-layer 
flow. and from the several references 
listed (with p. being the true sea-level density) 

(34) 

point of radius of curvature R. 
stagnation point, can be 

Btu ft'2sec'1 (35) 

Reference C m Remarks 

14 16,800 3.1 Intermediate enthalpy theory 
13,7 19,800 3.22 Theory of Lees 
15 17,600 3.15 Correlation of AVCO shock- 

tube experimental results 

We will base all our numerical calculations on laminar flow (n = l/2), 
andwillusethevalue m= 3 for purposes of simplicity (this corre- 
sponds to a gas with viscosity proportional to T1i2), and the value 
C = 17,000 Btu ft'3'2sec' ' which is adJusted to match a mean of the 
above results for air at velocities near peak heating (fi g 0.8). For 
gases other than air we use the theory of Lees (ref. 13) to obtain for 
hypersonic flow C *,/G~,aFr-~/a[(y - l)fi]1/4. In subsequent calcu- 
lations, differences in the Prandtl number and in the ratio of specific 
heats for various planets are disregarded. 
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Proceeding 
and C = 17,000, 
in terms of-the 
(6 = g/&,th, 
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from equations (35), (34), and (31) with n = l/2, m = 3, 
the lazuinar convective heat-transfer rate can be written 

Z function and the relative planetary constants 
4= di-&dh, etc -1 as. - 

. 

. 

- 

q = us = 590 
(3-Q 

where Z-U 5 /2z1/2 . (U the flow were turbulent 6 N E2'2Zo'8, approxi- 
mately, and we would have different powers appearing. in equation (36).) 
It is noted that the different variables affect the heat flux in a form 
represented by a series of factors; the expression in curly braces rep- 
resents the effect on heat flux of the particular planetary atmosphere, 
the expression in brackets represents the effect of the physical charac- 
teristics of the vehicle, that is, the mass, dimensions and shape of the 
vehicle, and the dimensionless function 6 =-U5'2Z1/2 represents the 
effect of the particular type of trajectory as determined by the lift- 
drag ratio. 

Whereas equation (36) for heating rate would be useful in studying 
vehicles designed to operate at radiation equilibrium temperatures, an 
equation for the total heat absorbed during entry is of more interest for 
heat-sink type vehicles. 

Q- qdtdS =k$ 
s sdt (37) 

where 

is the factor which takes into account the variations in heat flux over 
the whole surface S wetted by the boundary layer. (F0r.a hemisphere, 
for exsmple, k.2 g 0.5.) Combining equations (37), (361, and (30) yields 
the following equation for the heat absorbed between. u1 and 6 

where . 

(394 

. 
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c 

c 

Heat radiation from the surface is not considered in these equations. 
They are.useful in studying vehicles incorporating heat sinks or ablation 
cooling under conditions when the heat radiated away is small compared to 
the heat absorbed; Q = m(cm)s~~ (where c is the effective specific 
heat of the sink material) is proportional-to the heat-sink weight. We- 
note here that the particular planetary atmosphere (g, r, p) and espe- 
cially the particular trajectory Z(E, L/D) affect the heating rate q 
in a different fashion than the total heat absorbed Q. Examples 
illustrating this are presented later. 

Some Approximate Ansly-ticsl Z Functions 
Obtained From Truncated Basic Equation 

By disregarding three dirferent combinations of terms in the basic 
differential equation (U), three specisl solutions are obtained which 
yield results identical to previous approximate solutions. The details 
are described in appendix C-and lead to the following appraximate 
solutions: 

Solution 

ZII = 
l-ii2 

L 
W-E 5 

0 

21, =ii 
[ 
Zi -+JE cpiln + - 

2$(Y) In2 Er 

Vehicle 

Dallistic 

Glide 

Skip 

Terms disregarded 
(see eq. (2l.a)) 

Gravity, centrifugal 
and lift forces; 
cp =qj= constant 
Vertical acceleration 
and vertical component 
of drag force; co6 cp 2, 

WI 

(41) 
1 

Gravity and centrifugal 
forcesj co8 cp z 1 (42) 

The ZI function provides an approximate solution for the motion and .- 
heating identical to the solution of Allen and Eggers (ref. 1) for bslli- 
stic entry. The ZII function corresponds to equilibrium gliding flight 
originally discussed by S&ger (ref. 2). The corresponding aercdynamic 
heating problems for this type of hypersonic flight have been discussed 
by Eggers, Allen, and Neice (ref. 4) who also obtained a solution equiva- 
lent to the ZIII function for skip vehicles. As will be apparent later, 
the ZI function for ballistic vehicles is quite accurate for angles of 
descent greater than several degrees mlcpif>2 approximately) and the 
Z-J- function for hypersonic vehicles is quite accurate for L/D 
ratios greater than about amroximately) provided cpi g 0. 



22 NACA TN 4276 

The accurac 
/” 

of the ZIII function for skip vehicles, however, depends 
on both L D and the initial angle cpi. The conditions for applicability 
can be determined from an approximate solution which considers both the 
gravity and centrifugal forces that were neglected in obtaining ZIII. 
In appendix C the following approximate solution is developed for satel- 
lite entry (Tii = l,_Zi = 0) at small initial angles Cpi: 

zm = ii 
K-I 

r cpi2nTi -L 
2D [ 

1+ 
6 zsii 1 I- (43) 

By comparing with ZIII, we see that the gravity and centrifugal forces 
can be disregarded provided 2prlcpi(L/D)f>>l. An interesting feature 
deduced from Zm in appendix C is that the-total heat absorbed in the 
first skip (which is perhaps the most important) is essentially independent 
of both the initial angle cpi and the velocity of exit from the skip. 
The heat absorbed varies as l/E and hence is a minimum for entry at 
C!b (see appendix C). For flat plates in Newtonian flow this corre- 
sponds to an optimum L/D of 0.7. 

turn now from the special solutions obtained by truncating the full equa- 
tion (U), to some solutions of the complete nonlinear equation applicable 

Some Z Functions Obtained From F'ull Equation 

Entry from a decaying orbit for various L/D (Gi = 1, Cpi = O).- We 

to vehicles entering from a decaying satellite orbit. As the apogee of an 
elliptical orbit is slowly reduced by drag (primarily exerted near the 
perigee), the orbit eventually becomes a near circle and then begins a 
gradually decaying spiral; hence, the initial angle 'pi for this type of 
entry is taken as zero, and the initial velocity zi = 1. The peak heat- 
ing and the maximum deceleration occur at such small angles that 
CO6 cp g 1. The differential equation (U) is then 

_ 

-I-@+ aLo 
iiz -D (441 

and the corresponding boundary conditions for decaying orbits are 

z(1) = 0 Z'(1) = 0 (45) 

This system need be solved only once for each value of the parameter 
ah/D) j and the results are then applicable to any -planet and to any - _.. 

vehicle with.arbitrary shape, size, or mass: In particular, the universal -- ' 
Z function for L/D = 0 is presented in figure 4(a) (TTZ is plotted since : 
this product stays within smaller bounds than Z). Solutions of equa- 
tion (44) also have been carried out for various values of fi(L/D). The L 
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numerical method employed is described in appendix D. Curves of the 
Z functions and related quantities are presented in figure 4(b) for 

23 

values of fi(L/D) corresponding for earth to L/D = 0.1, 0.25, 0.5, 
and 1. They are plotted in coordinates especially suited for comparison 
with the ZII function of equation (41) representing S&ger*s concept 
of an equilibrium hypersonic glide. Values are not shown for L/D >l 
since 31 can be used in the velocity range of interest for these cases. 
This is evident from the various curves in figure 4(b). The dashed curve 
represents ZII which is the exact solution for L/D = 00. From the Z 
functions the various quantities of engineering interest, such as the 
deceleration, descent angle, range, time, density-velocity relationship, 
dynsmic pressure, Reynolds number, heating rate, and total heat absorbed 
can be computed from equations (26) to (39) presented earlier. 

Nonlifting entry with initial mgle of descent (Gi = 1, cpi < O).- 
We now consider entry when the initial descent angle is not negligible, 
as it is in the case of a decaying orbit, but is some finite value cpi. 
Entry with an initial angle occurs in the case of a ballistic vehicle, 
or a satellite to which a retrorocket has been applied to divert the orbit 
into one which will induce the entry process. The differential equa- 
tion (U) for nonlifting 
angles of descent. 

d ii= 
du 

bodies is applicable for large as well as small 

cos*cp = 0 (W 

The initial conditions are 

Z(Tii) = 0 Z'(Ci) =* Sin Cpi (47) 

In this case we have a double parameter family of solutions (ii-i and 
%/Es-T 1. Actually, we need solutions to the nonlinear equation (46) 
only for quite small initial angles inasmuch as the Allen-Eggers solution 
(eq. (40)) is applicable for moderate and large angles. This may be seen 
from figure 5 which presents example Z functions corresponding to the 
nonlinear equation for various -cpi up to 2o" with ui = 0.9 (23,400 fps, 
for earth). Since the ordinate is Z/*(-sin 'pi), the Allen-Eggers 
solution is represented by the ordinate function T? Zn(Ti&) on this plot. 
It is evident that their solution, which neglects gravity and centrifugal 
forces, is quite accurate near peak heating (isi g 0.7) for descent angles 
greater than about 5’. Near maximum deceleration (Ti P 0.4) the descent 
angle has to be somewhat larger for comparable accuracy. It is clear 
that, as far as peak heating and maximum deceleration are concerned, a 
family of solutions to the nonlinear equation need only be computed for 
small initial angles. 

The Z functions for small initial angles and for the case of 
satellite entry (iTi = 1) are of special practical interest. These are 
presented in figure 6(a) for various values of fl cp~ such that in the 
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earth's atmosphere -cpi = lo, 20, 3O, 4O, and 60. Rather than to plot 
Z itself, the quantity 30 EZ is plotted GMch represents for the earth 
the horizontal deceleration in g's. Tabulated values are presented in + 
table I for qi = O", 0.5O, lo, 2O, 3O, and 4O. It is noted that these 
values tabulated are solutions to equation (46) with the cos4p term 
included, and hence are applicable to terminal conditions of small z 
(say less than 0.1) where rp is large as well as to conditions near peak 
heating and maximum deceleration where cp is small. The tables of Z 
apply to any planet for the same initial value of ecpi. The supple- 
mentary tables of..-.-cpeahht (As/r)ear.th, and tearth can be applied to 
other planets over the range where cp is small by regarding the tabu- * 
lated values as representing -(fi/30)9, (*/30)(&/r), and 27fit, 
respectively (see eqs. (27), (28), and (30)). 

Entry with initisl angle of descent for various L/D (5-i = 1, (pi<O).- 
If we now consider a vehicle with lift, we must restrict our considerations 
to small initial angles of descent -'pi and to the portion of trajectory 
over which 
tion (b)). 

-cp remains sufficiently small that (L/D)ltan cpl<<l (assump- 
The basic differential equation (U), with co6 cp = 1, becomes 

the same as equation (44), and the initial conditions are now 

z(1) = 0 Z'(1) = JF 'pi (48) 

Solutions to equation (44) with these initial conditions have been obtained 
for various values of ,,,@ cpi and for various values of the parameter c 
fi@/D). 

In figure 6 some curves representing Z functions are presented w 
as a function of 

L/D 
-'pi for earth. The various portions of this figure 

correspond to for earth of 0.25, 0.5, 0.7, and 1. It is evident 
from these figures, as might be expected, that small values of L/D snd 
-(pi do not result in any significant skipping, but once the L/D is * 
increased beyond a certain amount , or the initial descent angle is greater 
than a certain value, then numerous skips of sizable intensity occur 
during the entry trajectory. Information on the heating rates, total heat 
absorbed, and horizontal range during entry, has been obtained from these 
Z functions and is discussed later. The Z functions in figure 6 
could be applied.to any planet by noting that 'pi for earth is equivalent 
to a value (pr),'lb times as great on another planet, and that a given 
(L/D) for earth is equivalent to a value (f3r)<u2 times as great. 

Atmosphere braking for various L D (ci > 1, Cpi < O).- Ln entering 
the atmo-sphere of a planet from space, 
parable to escape velocity (ci = $). 

the approach telocity can be com- 
It is uneconomical in weight to 

use chemical rockets for reducing the approach velocity in outer space, 
and it is possibly uneconomical in time to use a low-thrust space engine. 
Hence there is considerable interest in the braking process of making 
successive -passes through an atmosphere in order to reduce stepwise the 
velocity and the eccentricity of an orbit to near circular conditions 
61 E 1). 
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In analyzing the atmosphere braking proce.ss, cos cp can safely be 
replaced by unity, so the basic differential equation (2l) becomes once 
again the same as equation (44), but the initial conditions are now 

Z(Ui) = 0 Z'W = JE Pi 

where T?i > 1. By arbitrarily selecting various values for the angle of 
entry cpi, various solutions are obtained corresponding to single passes 
through the atmosphere at various altitudes from the surface. It might 
be more convenient in describing a single pass to select as the arbitrary 
parameter the velocity -ii at the exit of the pass, or 30(%;-, which, 
for the earth, would be the maximum deceleration in g's experienced during 
this pass, and would be independent of W/CD&!. 

In figure 7, four Z functions are presented for nonlifting vehicles 
which start the braking process with essentially escape velocity (Tii=l.&) 
but with different vslues of maximum deceleration in the first pass. The 
short-dash curve (a) corresponds to a maximum deceleration in the first 
pass of 3o(Ti!z),, = 0.46. It is seen that, starting with this initial 
pass (and with no further control exercised on the vehicle) six passes 
would occur before the seventh pass completed the entry process. The 
long-dash curve (b) in figure 7 corresponds to 30(Ti!Z)msx = 1.65 for the 
first pass. In this case only two passes occur before the third pass 
completes the entry. The other two curves (c) and (d) in figure 7 corre- 
spond to conditions wherein the first pass is the only one, inasmuch as 
it is made sufficiently close to the planet surface to complete entry 
without ever emerging from the atmosphere. 

In computing the Z function for a successive pass, the initial 
angle was assumed to be the same as the exit angle of the previous pass. 
The exit angle was taken at the point where dr/r = du/u. Further dis- 
cussion of these Z functions, and the results of other such functions 
computed for atmosphere braking are presented later. 

RESULTS ANDDISCCSSION 

From the various Z functions presented, it is relatively easy to 
study the influence on entry motion of several variables of practical 
interest. For example, we could study the effect of lift-drag ratio on 
deceleration and aerodynsmic heating, or the effect of a small error in 
initial angle of descent on the range over which the re-entry process 
takes place. Before considering such topics, however, it is desirable 
to discuss two preliminary items. First, we ccYnpare some results from 
the present approximate analysis for an exponential atmosphere with more 
exact machine calculations for a standard atmosphere. This serves to 
provide a feeling for the accuracy of the present analysis, and also to 
show how any of the subsequent results readily can be corrected, if 
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desired, for atmospheric temperature variations. Second, we discuss the 
relative deceleration and aerodynsmic heating of various planetary atmos- 
pheres. This provides multiplication factors which enable any of the 
subsequent results for the earth's atmosphere to be quickly converted to 
results for other planetary atmospheres. I ..- 

Comparison of Present Analysis With Other Calculations 

An insight into the approximate accuracy to be expected from the 
present analysis can be obtained by cmparison with machine calculations 
of the pair of motion equations for specific vehicles. Differences 
between the present analysis and more exact calculations can arise 
inasmuch as the present analysis makes certain assumptions about the 
trajectory that is Idr/r/<<\du/u[ and I(L/D)tsn 'pi << 1) and about the 
atmosphere I pm - e -b 1 Y which need not be made in numerical machine cal- 
culations. The a posteriori check of the trajectory assumptions, as 
presented in appendix A, shows that insofar as convective heating and 
peak decelerations are concerned, only a few percent difference should 
be expected for vehicles entering from a sa@XLite orbit. A check of the - 
assumption of an exponential atmosphere can be obtained by comparing with 

- 

numerical calculations for some standard atmosphere. DI figure 8 a com- 
parison is made of the present analysis with numerical calculations from 
the pair of motion equations using the ARDC model atmosphere. These - l 

numerical calculations were made by M. W. Rubesin and G. Goodwin using 
equations equitient to (6) and (7) without discarding any terms. The 
curves in figure 8(a) show close agreement of both the altitude and the 
descent angle as a function of velocity. The curves in figure 8(b) show 
s3milsr agreement of the circumferential distance traveled (As/r), and of 
the maximum deceleration (within 6 percent). This small difference in 
maximum deceleration is believed due.primarily to the departure of the 
ARDC atmosphere in certain altitude regions from the idealized exponential 
atmosphere of constant fi (l/23,% ft'l). 

As noted earlier, the present analytical method can readily be 
applied using semUocal values of ,,& if it is desired to make correc- 
tions to the results in order that they more closely represent some 
standard atmosphere. Corrections also can be made to sJ.low for atmos- 
pheric seasonal variations , or for variations with the earth's latitude. 
In this sense? analytical results for an exponential atmosphere are actu- 
ally more general for global application than numerical results for any 
single standard atmosphere. This can be seen from the results which 
follow. Let us consider the maximum deceleration for entry from a 
decaying orbit. This occurs at a velocity near E = 0.43 at which point 
Z"- 0.64 (fig. 4(a)). The approxQna.te altitude at which maximum deceler- 
ation occurs is obtained by substitutirt~ either into equation (3l.a) to 
yield (PIP,)- du,dt = 5-5(W/WW-O , or into equation (31b) to yield 
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ymax du/dt = 23,500 = 2n & 
> 

ft 

and is seen to depend on W/C@. Since fi for the ARE model a-hnos- 
phere depends weakly on altitude, as shown in figure 2, the maximum decel- 
eration ~(TiZ),, = O.278fi in a standard atmosphere also will 
depend weakly on altitude, and hence weakly on W/C& The resulting 
values of -q&g are shown by the solid curve in figure 9, for (W/C+) 
values ranging from 0.01 to 1000 lb/ft. They agree very well with the 
points shown which represent numerical integrations (Rubesin-Goodwin) of 
the complete equations for the ARE model atmosphere. 

If desired, similar corrections for atmospheric variations also 
could be made to other quantities computed for a mesn vslue n = 30. 
Thus, the distance traveled varies as (pr)'l" (es. (28)), and the con- 
vective heatFng rate varies as (pr)l'* (eq.(36)). It is noted that the 
fluctuations in fi with altitude, as plotted in figure 2 correspond 
very closely to the fluctuations in !?-1i2, as should be expected, since 
B = Mg/RF. Hence any variations in mean atmospheric temperature, such as 
seasonal variations or longitudinal variations, can just as readily be 
corrected for as variations with altitude. 

Gazley (ref. 8) has developed an approximate theory for the case of 
orbital decay with L/D = 0 by assuming ?%p is constant. This arbitrary 
restriction yields results for orbital decay without lift that are quali- 
tatively similar to the present analysis, but quantitatively dissimilar. 
For example, the density-velocity relationship near peak heating (E E 0.8) 
differs by a factor of roughly 2. For higher velocities the discrepancy 
rapidly increases, and for lower velocities it decreases. The peak decel- 
eration occurs at lower velocities and is not greatly affected by Gazley's 
assumption. For the earth (z = 30) he obtains a maximum of 9.6 g at 
Ti = 0.54, whereas the present analysis, which does not make any assumptions 
about the u.(q) relationship, yields 8.3 g at Ti = 0.43. 

Relative Deceleration, Heattig, and Reynolds Numbers 
For Entry Into Various Planetary Atmospheres 

For a given size and shape of vehicle the deceleration, laminar 
heating rate, total heat absorbed, and Reynolds number vary, according 
to equations (26), (36), (39), and (33L respectively, as 

9 ~ pr-2 /3cb1/2g~/2r5/4~3/4z1/2 

Q - Pr-2/3po l/2g3 /4p-1/4z-1/2 
(50) 

Re N g1/2pcb-1z 
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In the case of nonlifting entry Prom a decaying orbit (zero initial angle 
of descent), the characteristics of the planetary atmosphere (fi) do not 
enter the differential equation or the initial conditions (Zi = 0, 

w 

Zi' = 0); hence Z can be disregarded in computing the relative values 
of the above quantities for various planets. In the more eneral case of 
entry from high altitude (Zi = 0) with Pixed.values of P Pr 'Pi ad fib/@ I 
the Z function still would be the same for all planets. Neglecting dif- 
ferences in Prandtl number and ratio of spectiic heats, we have for several 
planets the following relative values 
decaying orbits, or to any other type 
andG(L/D) are fixed: 

applicable to no&lifting entry Prom 
of entry where the values of fi ($1 

Venus 
Earth 

r 

MSXS 
Jupiter 

(d”/at,e 
relative 
deceler- 
ation 
(g k/&B, 

o-9 
1.00 

S:2 

2 rela ive 
heating rate, 

(po1/2g312-$4pl!4)~ 

o-7 
1.00 

.09 
50. 

n I R% 
% 

relate. ' .ve total relative 
L--J. -7 11~1, &sorbed, Reynolds 

number, 
(~o=/2g~/4p-1/ 4)@ (g=Pp=PClo-=)a 

0.8 1. 
1.00 1.00 

5oi2 .4 
2. 

It is to be remembered that, Fn the case of a vehicle with lift, in order 
to have the same Z function, a given 
to an L/D ratio (Br)e ml'2 

L/D ratio on earth is equivalent 
times as great on a planet other than earth, 

ami that a given Cpi on earth also is equivalent to a rpi value '- '- 
(pr)eW1i2 times as--.great on another planet. -This equivalence, together 
with the above table, enables any result for earth to be converted to a 
result for each of the other planets. 

I 

.- 

- 

.- 

- 

In the special case of entry at a constant angle Cpi, the atmospheric 
characteristics enter the initial conditions on Z (Zi' = fi sin cpi). 
Since equation (40) shows that Z -.,@? for-this type of re-entry, we 
include this in the expressions (50) to obtain the following relative 
values applicable only to ballistic entry (L/D = 0) at constant cp: 

9@ 
relative 

heating rate, 
(~l/2g3/2r3/2B1/2)e 

Venus 
Earth 
Mars 
Jupiter 

0.7 0.7 
1.00 1.00 

.06 .2 
70. 20. 

Qe 
relative 

total heat 
absorbed, 

w-'2d, 

Rete 
relative 

Reynolds number, 
k112$+%o-1)e 

1. 
1.00 

412 
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These relative values for ballistic entry are exactly the same, of course, 
as would be obtained directly from the theory of reference 1 and are 
applicable for initial angles greater than about 50. The previous table 
would apply for 'pi = O". For nonlifting entry with (pi the order of a few 
degrees, the relative values for various planets would be intermediate to 
the above two tables. 

We see that entry into the atmosphere of Venus involves only slightly 
less deceleration and heating than does entry into the earth's atmosphere, 
whereas entry into Mars involves much less deceleration and heating, and 
entry into Jupiter, much more. The Reynolds nmbers, however, are not as 
greatly ddPPerent for the various planets. 

Effect of Lift on Deceleration, Heating Rate, and Total Heat 
Absorbed During Entry From Decaying Orbits 

From the relative values of deceleration and heating for various 
planets, together with the Z functions already presented, certain 
quantities of practical interest readily can be computed. The remainder 
of this report concerns such application of the Z functions for the 
various types of entry. In the present section we discuss first lifting 
entry from decaying orbits (rii = 1, ~1 = 0). 

Deceleration- A plot of the horizontal deceleration du/dt in g*s 
for the earth's atmosphere (equal to 30 ii!Z) is presented in figure 10 as 
a function of the dimensionless velocity ii for various lift-drag ratios. 
The powerful effect of L/D ratios the order of only a few tenths is 
evident from this figure. It is also evident that the maximum decelera- 
tion occurs near a velocity of fi S 0.4. These curves are independent of 
the shape, size, and mass of the vehicle. The resultant deceleration is 
taken as a = d(du/dt)' + [(dv/dt) - (S/r) + g]". For no motion this 
expression reduces to g, the gravitational constant of the planet. By 
substituting equations (16) and (20) we have 

2, ~~~qiq 
@; 

which, for small angles (IcpI << L/D, cos cp S 1, tan2g 

a 
0 %U3X 

S fi(QZ),,&+ (L/D)2 

(51-I 

<< 1) yields 

A plot of this approximation for the maxkum resultant deceleration is 
shown in figure ll for the several planets considered. Once again the 
strong influence of the L/D ratio nesr L/D = 0 is evident. Also 
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evident are the relatively low decelerations for Nars compared to earth 
and Venus, and the relatively high values for Jupiter. 

From the viewpoint of human tolerance to acceleration stress, it is 
not only the peak deceleration which must be considered, but also the 
orientation of the body, the duration of stress, and the rate of onset of 
deceleration. Numerous experiments with the-human centriruge have shown 
that human tolerance is greatest in transverse orientation; that is, with 
either chest-to-back or back-to-chest loading. Centrifuge experiments 
( see, e.g., ref. 16 and the references quoted therein) also have shown 
that the magnitude of acceleration is relatively more important than the 
duration, in the sense that if the acceleration is increased 10 percent, 
the tolerable duration is decreased by a factor of about 2. Thus, a 
method believed to be conservative for calculating the effective duration 
At during entry is to assume that the maximum deceleration acts over the 
entire time it would take for this deceleration to slow the vehicle from 
orbital velocity to rest. Curves of maximum deceleration versus duration 
computed in this manner are presented in figure 12 for various planetary 
atmospheres and for various L/D ratios. Included in this figure is a 
boundary representing human tolerance in the:transverse orientation for 
conditions of rapid onset of acceleration (ref. 16 and references quoted 
therein). This boundary also is conservative inasmuch as entry decelera; 
tions are built up relatively slowly under which conditions, according to 
the centrifuge experiments of reference 17, the body circulation builds 
up a reflex action of effectiveness comparable to that provided by a c 
G-suit. The conservative limits determined from this figure are indicated 
in figure ll. It is evident from both figures ll and 12 that the deceler- 
ations for orbital entry into the earth's atmosphere are well within human 
tolerance even Por.nonlifting bodies. For Mars, human tolerance is suf- 
Picient to permit entry at sizable angles of descent or with negative 
lifting devices. Manned entry into Jupiter, however, would require a 
positive lifting body, or some other device in order to maintain the 
decelerations within human tolerance. 

Heating rate.- In examining the effect of lift on convection aero- 
dynamic heating oP entering vehicles, we can use the same Z functions 
as employed in studying the decelerations. We note first that for many 
vehicles, the values of Reynolds number near peak heating are sufficiently 
low that one would expect a considerable extent of laminar Plow, yet suf- 
Piciently high to be in continuum-gas flow rather than free-molecule flow. 
A plot of Be/l at peak heating is presented in figure 13 as a function 
of W/C!DA for entry from orbital decay into the earth's atmosphere. A 
vehicle on a large parachute would correspond to W/C@ the order of 
0.11b/ft2, and, with L/D = 0, to Re of a&t l# Pt'l. For such con- 
ditions the peak heating, which occurs at a Mach number & g 20, would 
be near the slip-flow regime (Re/G s 1). A reasonably blunt metallic 
structure would correspond to W/C@3 values-the order oPlO_to 100 lb/ft2, 
and to values of Re/Z the order of 10s to 105. Such values are well 

.- 

-- 

within the continuum regime, yet low enough to be associated with lsminar c 
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flow. The curves in figure 13 are for earth but can be applied to other 
planets by multiplying the ordinate by the value of the relative Reynolds 
number already tabulated for several planets. 

For a given atmosphere the lsminar heating rate is proportional to 

A plot of the dimensionless heating rate a as a function of ii is 
presented in figure 14 for entry Prom decaying orbits. The maximum value 
occurs at a velocity U of about 0.8 and is a function only of the param- 
eter *(L/D) as follows: 

di%L/D) (L/D) Earth -&ax 
-15 
-7.5 
-3 
0 

c5 
15 
30 

-0.5 0.375 0.783 
-.25 .302 .741 
-. 1 -253 l 709 

0 .u8 9693 
.l .184 ,656 
-25 ,138 .610 
.5 .og8 .5a 

1.0 .070 .514 

For L/D ratios greater than 1 the asymptotic solution ZI-J = (1 - G2) 
m E(L/D) 

can be used to yield c&x = 2 

3azcE 
as noted in appendix C. 

We will consider that the vehicle dimensions and weight (R, A, and W) 
are fixed, and will study the influence oP vehicle shape (CD and L/D). 
Under these conditions the maximum heating rate is proportional to 
-&/a - The effect of lift-drag ratio on maximum heat- rate (which 
occurs at a ii of roughly 0.8) is iIllustrated &I figure 15 for entry 
Prom deca 
unity for ""$ 

orbits. The quantities plotted have been normalized to 
L D = 0, and can be applied directly to any planet, as can the 

curves in figure 14, by recalling that a given L/D for Earth is equiva- 
lent to a value (pr), II2 times as much for a planet other than Earth. IP 
the L/D ratio could be increased indefinitely without changing the drag 
coefficient such as by using reaction lift, then the maximum laminar heat- 
ing rate would be proportional to the dotted line in figure 15 represent- 
ing -& and would decrease indefinitely with an increase in L/D 
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(asymptotically as (L/D)'1/2 for L/D greater than about 0.5). physically 
this decrease arises because the greater the lift, the less rapid the vehi- 
cle descends, so that the heating occurs at higher altitudes where the 
density is lower. On a practical detice which uses aerodynamic lift, how- 
ever, the L/D ratio cannot be increased much without making the vehicle 
more slender and decreasing 
rate (- 1 /flD) 

CD; a decrease in CD increases the heating 
b ecause it results in less slowing down, thereby causing 

the peak heating to occur at lower altitudeswhere the density is higher. 
As a result, there is an optimum L/D ratio for minimizing the heating 
rate which, for the three families of shapes indicated in figure 15, is 
near the range of L/D between about 0.5 and 1. For the family of half- 
cones and half-paraboloids, the L/D ratio was changed by changing the 
fineness ratio while maintaining the flat tops parallel to the stream 
direction. For the family of flat plates the L/D ratio was changed by 
changing the angle of attack. In all cases, CD and L/D were computed for 
Newtonisn flow. The optimum L/D ratio is seen to depend samewhat on the 
particular aerodynamic shape, since L/D and CD are coupled somewhat dif- 
ferently for different shapes. It is evident that the net benefit to be 
gained by using aerodynsmic lift amounts to about a factor of 2 in reduc- 
ing the maxirmrm rate of aerodynamic heating at a stagnation point. 

m 

L 

- 
- 

Inasmuch as the optimum L/D ratios for minimizing the maximum heat- 
ing rate are greater than about 0.5, they are in the range where the ZII 
function for orbital decay is a good approximation near peak heating (see 
fig. 4(b)). From equations (36) and (41) we see that for a given planet 
and given radius at a stawtion point, 

since L/D = CL/CD, 

(54) 

and we see that the various minima in figure 15 each correspond to enter- 
ingat CL. The peak heating always occurs at a dimensionless velocity 

ii =,J222222222222222222 = 0.82. F or flat plates in Newtonian Plow C!h = 0.77 at an a 
angle of attack of 55', for which L/D = 0.7s. As noted 
these conditions also turn out to represent optimum ones 
the total heat absorbed for skipping-type entry, because 
< and a vary as (L/D)'li2. 

Surface temperature for radiation equilibrium.- The stagnation sur- 
face temperature experienced during entry of a structure having relatively 
small heat capacity (e.g., a thin skin) is calculated by equating the 

in appendix C, 
for minimizing 
in this case also 
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radiation heating rate to the convective heating rate. For entry Prom 
decaying orbits we may set cos cp =l, inasmuchas cp nearpeakheating 
varies Prom -2.6O to -0.20 as L/D varies Prom 0 to 1. We have 

EaTws4 = 9s = 590 J & c 3tu ftB2sec'" (55) 

where e is the surface radiative emissivity, R the radius of curvature, 
and a = 0.48x1O'= Btu ft'2sec'1 'Rm4 is the Stefan-Boltztnann constant. 
By substituting the value of gc 
R in ft, W/CDA in lb ft-2), 

for Earth there results (for Tw in OR, 

where q for 1 ,512 sminar Plow is equal to u Z1f2. Themsximumvalue 
-&l/4 is listed in the preceding table for entry from decaying orbits. 
Other types of entry would require the use of other Z functions, but 
equation (56) would remain unchanged. For a planet other than Earth, the 
radiation-equilibrium temperature calculated frcm the above equation for 
Earth would have to be multiplied by the @l-root of a quantity already 
tabulated; namely, the relative rate of heating -& for that planet. The 
relative radiation-equilibrium temperature factors Twe = %=I4 are: 

Venus 0.91 
Earth 1.00 
Mars 055 
Jupiter 2.7 

A graph of the maximum temperature parameter TwS~1/4R1'8 for entry fram 
decaying orbits is presented in figure 16 as a function of W/Q!4 (W in 
Earth weight). It is noted that the numerical calculations for nonlifting 
satellites descending in the Earth's atmosphere, as reported by Kemp and 
Riddell (ref. 6) and by Gazley and Masson (ref. 5), agree well with the 
analytical variation represented by the present anslysis. 

The curves for Tws in figure 16 could be applied to other planets 
for any given value of fi(L/D) by multiplying the ordinate by the 
quantity Twe tabulated above. Since L/D is a more convenient variable 
than *(L/D), however, a separate plot of the parameter .- 
Twsei/4/(W/C!~)l/e (which represents the maximum surface temperature that 
is experienced during entry for radiation equilibrium at a stagnation 
point of radius of curvature 
of L/D for several planets. 

R) is presented in figure 17 as a function 
The coupling between CD and L/D is taken 

as that for the family of half-paraboloids. The others would not be 
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greatly different, as may be seen from the curves in figure 15. We can 
deduce frcm figure 17, for example, 
and W/CDAR = 1 lb ft-3 

that a nonlifting body with e = 0.9, 
(e.g., R = 1 ft and W/C&A = 1 lb ftm2 or R = 10 ft 

and W/C!DA = 10 lb ftm2) would experience during entry from orbital decay 
a maximum stagnation temperature of approximately 10oO" F for Mars, 
2000° F for Venus, 22CO" F for Earth, and 6800’ F for Jupiter. 

Total heat absorbed.- It is emphasized that the effect of ltit-drag 
ratio on the total heat absorbed Q is quite different from the effect 
just discussed on the heating rate q. The use of lift prevents a vehicle 
with a given drag coefficient from descending as rapidly as a nonlj9ting 
one, thus leading to lower heating rates at higher altitudes, but the lift 
also prolongs the descent markedly. This prolongation dominates over the 
reduced rate of heating, to lead to a net increase in total heat absorbed 
with increasin L/D. That the total heat absorbed must increase with an 
increase in may be clearly seen from the general equation 

Q =-Z(fJ(i mV2) (57) 

develo ed by Allen and Eggers in reference 1. For a given CD, an increase 
in L D does not change the kinetic energy loss, but it does increase the P 
effective laminar skin-friction coefficient CF' inasmuch as the corre- 
sponding increase in altitude results in the heat being taken aboard at 
lower Reynolds numbers where CF' is higher. 

The quantitative magnitude of the increase in Q with an increase 
in L/D may be deduced from equation (39) for Q (which neglects the heat 
radiated frm the surface). For a given atmosphere (given Pr, p, g, r, 
p) and a given size and weight (A, R, W), Q for lsminar flow and 
cos cp % 1 Is proportional to the quantity 

w 
- 

where q is a function of L/D and is very insensitive to the lower 
limit c down to which the integration 2s carried (providing E is 
smau. For convenience in evaluating Q from the Z functions, we 
select an arbitrary upper limit ii= = 0.99. :The following vslues for 
a are obtained for entry from decaying orbits: - 
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*b/D) (L/D) Earth 

-30 
-15 
-7.5 
-3 

0 

L 
15 
30 

-1.0 0.75 
-. 5 -93 
-.25 1.09 
-. 1 1.23 
0 1.36 

.l 1.54 

.25 1.90 

.5 2.53 
1.0 3.54 

a 
for ii1 = 0.99 

For L/D ratios greater than 1 the asymptotic ZII function can be used 
to yield &I = 0.62(gr)l/*m for the heat absorbed between Til = 0.99 
and320. (See appendix C for a more general expression for &I.) 

The effect of lift-drag ratio on the total convective heat absorbed 
(disregarding radiation from the surface) during entry into the earth's 
atmosphere from decaying orbits is plotted in figure 18. These curves 
are normalized to unity for L/D = 0. In contradistinction to the effect 
on q, an Increase in L/D by itself is seen to &ways increase q, and 
hence Q, as anticipa.ted from equation (57). 
L/D and CD is considered, 

When the coupling between 
an optimum occurs at negative L/D ratios, 

near the range -0.7 to -0.5. In view of the fact that these negative 
L/D ratios result Fn high decelerations (fig. ll) they would not be 
feasible for a manned entry into the earth's atmosphere; the practical 
optimum for a heat-sink vehicle would be near L/D = 0. 

In figure 19 curves are presented of the total heat absorbed per unit 
area during entry into various planets from decaying orbits. Radiation 
from the surface is disregarded for these curves. They represent the 
family of half-paraboloids, but the other families would not be signifi- 
cantly different. As would be expected, the minimum for each planet occurs 
at a negative L/D ratio. For Mars the decelerations are not excessive 
for L/D near -0.5 (see fig. 11) but the reduction in total heat absorbed 
compared to a nonlifting vehicle is only about 10 percent. 

Nonlifting Entry From Deflected Orbits 

In the discussions thus far we have considered only the trajectories 
resulting from decaying orbits wherein the initial descent angle is 
essentially zero. This type of entry leads to relatively shallow angles 
of descent with relatively low heating rates, but provides very little 
control over the time of entry and the location of impact. One method 
commonly envisioned to fix the time of entry, and greatly improve the 
accuracy of landing in a predetermined area, is to induce entry by 
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. 
suddenly deflecting an orbit so as to enter at some initial flight path 
angle 'Pi- A retrorocket force, for example, or a rocket force applied 
in the direction toward the planet center will initiate such entry. 
Induced entry of this type, however, results-in greater decelerations and 
can affect the aerodynamic heating problem either adversely or favorably. 

. 
- 

A curve is presented in figure 20(a)showing the effect of initial angle 
'pi on the maximum deceleration experienced during entry of nonlifting 
vehicles into the earth*s atmosphere. Also shown for comparison is the 
approximate limit of human tolerance (for rapid onset with transverse 
orientation), and a dotted curve corresponding to the Allen-Eggers theory 
for cp = constant = cpi. This .theory for Ki = 1 can be used for descent 
angles greater than about 4' or 5". Above about -'pi = 3’ the decelera- 

-- tions exceed human tolerance, so that some method of deceleration sllevia- 
tion, such as provided by lift, or by increasing the value of W/C@ 
during descent, would have to be employed for manned vehicles entering at 
these larger angles of descent. The curve of (dii/dt)- in Earth g's 
can be applied to any planet by regarding the abscissa scale as being 
-(fi)ecpi and then multiplying the ordinate scale by (g me. 

The effect of initial angle on maximum lsminar heating rate and on 
the total laminar heat absorbed is shown in figure 20(b). As would be 
expected, the steeper the descent the greater the heating rate. The total 
heat absorbed, however, is less for the steeper descents because the 
shorter duration more than compensates for the greater laminar heating 
rates. Equation (5'7) shows that this must be the case, since entry at 
larger angles results in the heat being taken aboard at lower altitudes 
where the laminar skin-friction coefficients are smsll. If the flow were 
turbulent the corresponding reduction in C!$' and hence in q with an 
increase in descent angle would be less. The curves in figure 20(b) 
approach the curves developed from the ZI function corresponding to the 
solution of Allen and Eggers (see eqs. (C3) and (C4) of appendix C). In 
order to be consistent with the other values of a representing the heat 
absorbed from 7i = 0.99 to 7i E 0, a calculated factor.O.$c has been applied 
to equation (C4) which represents the heat absorbed from K = 1 to ?i = 0. 
It is seen from figure 20(b) that the Allen-Eggers solution for heat 
transfer in this case (Gi = 1) is quite accurate for descent angles greater 
than about 2'. The curves in figure 20(b) can be applied to other planets 
by regarding the abscissa as a scale for the quantity -(fi).cpi‘ 

In the figure 20(c) a curve is presented showing the strong influence 
of initial descent angle on entry range for-Earth. Two incremental ranges 
are shown: a solid line curve for the distance between the point where 
7i = 0.995 and the impact point (u = 0), and a dashed-line curve for the 
distance between .K = 0.99 and impact. From the slope of the solid-line 
curve we obtain the lower curve shown of average miss distance for an 
error in cpi of 0.5'. It is to be remembered that this miss distance 
curve does not consider the essentially dragless portion of a deflected 
orbit from the point of orbit deflection to the point where i? = 0.995, 
and hence it is indicative of only the entry portion of the practical 

I 

T 
l 
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problem of estimating miss distance. The curve illustrates, however, the 
advantage of using a small initial descent angle in order to greatly 
Fmprove the ability to determine impact point. 

A further contribution to miss distance which can be studied with 
the present equations is that due to atmospheric variations in temperature 
with either season or latitude. Equation (28) shows that As -(fi)'l, 
so that a *15-percent seasonal v&ation in temperature would correspond 
to a +7-percent variation in fi and in As. For small initial angles, 
say cpi,= -lo, the range during entry from K = 0.995 to tipact is roughly 
loo0 miles according to figure 20(c), and hence the impact point would 
vary +70 miles. The entry range would be greater in summer than in winter. 

A graph of the Reynolds number per foot at peak heating for nonlifting 
entry into the earth's atmosphere with Vi = 1 is presented in figure 21 
for -'pi = O", 50, loo, 20°, 40°, and 90". 
on the Z function of figure 4(a). 

The +i = 0' curve is based 
NJ. others are based on the ZI 

func;ion corresponding to the Allen-Eggers solution. Entry at other values 
of 3, according to this solution, results in values of Re proportional 
t0 Vi. 

Lifting Entry From Deflected Orbits 

If a vehicle with L/D > 0 enters the atmosphere from a deflected 
orbit at a sufficiently large initial angle of descent, the entry trajec- 
tory is comprised of one or more skips. This is to be expected on physical 
grounds and is evident frcxn the Z functions already presented in fig- 
ures 6(b) to 6(e). lxlring the first portion of descent, a vehicle under- 
going a sizable skip will, at the bottom of the skip, decelerate and take 
on heat at a lower altitude than a vehicle at the same velocity which 
glides in smoothly from a decaying orbit (cpi = 0). For large initial 
angles of descent, then, we might expect a skipping vehicle entering from 
a deflected orbit to experience greater decelerations, higher heating 
rates, and shorter entry range than a gliding vehicle entering from a 
decam orbit. On the other hand, since the skipping vehicle takes on 
most of its heat at a lower altitude (where the skin-friction coefficients 
are lower) we would expect from equation (57) that the skipping vehicle 
would absorb less total heat during entry than the orbiting-decay vehicle. 
CsJ.culations from the Z functions of figures 6(b) to 6(e) show these 
various expectations to be the case for initial descent angles -(%.)&y-h 
greater than about lo. This is illustrated in figure 22(a) for maximum 
lsminar heating rate,.in figure 22(b) for total laminar heat absorbed, and 
in figure 22(c) for entry range. The expected increase ti deceleration is 
already evident from figures 6(b) to 6(e) which show 30 TTZ - du/dt as the 
ordinate. 

If a vehicle with L/D > 0 enters the atmosphere from a deflected 
orbit at a very small initial angle of descent, so that the trajectory 
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might be described more appropriately as a rippling descent rather than 
a skipping one, then the peak deceleration and maximum heating rates can 
actually be slightly smaller than for the same vehicle gliding in from 
a decaying orbit. What happens in such cases may be seen, for example, 
in figure 6(c) by comparing the curves for -'pi = lo and -(pi+= 0'. The 
rippling entry (-Cpi = lo) has one maximum on each side of the maximum 
for -cpi = 0' representing orbital-decay entry. These two maxima in 
deceleration for -Cpi = lo are slightlJr less than the single maximum for 
-'pi = o". A similar situation can exist for the maxima in heating rate. 
As a result, the curves in figure 22(a) for-the dimensionless maximum 
heating rate Fmax for lifting vehicles entering from deflected orbits 
show slight waviness and sometimes slight reductions below thg valueos for 
-'pi = 0 when-the initial descent angle is less than about l/2 to 1 . 
Consequently, we can say that, in principle, a rippling-type descent from 
a deflected orbit can have lower maximum heating rates than a gliding 
descent, but for practical purposes, there is no significant difference 
between the two. 

composite Entry 

It may be desirable to combine lifting and nonlifting entry in order 
to achieve some advantages of both types. For landing maneuverability it 
obviously is advantageous to employ a lifting vehicle. The total heat 
absorbed by a lifting vehicle, however, is much higher than for a nonlift- ._ 
ing vehicle (fig. 18). The optimum use of aerodynsmic lift reduce6 the 
maximum heating rate only to about one-halfthat of a nonlifting vehicle 
of the ssme W/A. Nonlifting vehicle6 can more easily be constructed 
with much lighter W/A ratios by employing, for example, a large, light 
drag device (for example, a parachute). 
is the heating rate (q - l/ AZ - Z-a/e), 
numbers (Re N (W/C$)Z - 2-l r 

The larger the device, the smsller 
the smaller the entry Reynolds 

, and the better the possibilities are of 
maintaining laminar flow. Nonlifting vehicles with shuttlecock stability 
are advantageous also from the viewpoint of~~minimum control requirements 
during entry. Hence, an evident composite Q-pe of entry, which combines 
some of the desirable features of lifting and nonlifting trajectories, 
would be to enter first without lift but with a small W/QA provided 
by a drag device; then, when the velocity is reduced to a certain value 
cb the device is jettisoned or retracted, leaving a lifting vehicle of 
larger W/C@ for the remainder of the deskent. 

I 

A practical compromise is required in selecting iib, because the 
drag device should be jettisoned as soon as possible from the viewpoint 
of achieving maximum maneuvering range, but-as late as pOS6ible from the _ __ _ 
viewpoint of achieving major reductions in heating rate. For the initial 
nonlifting portion of descent let the drag-weight parameter be (W/C!&, 

.-' I 

and the Z function be Z,. For the subsequent portion let the corre- 
sponding quantities be (W/CM)1 and Z1. Since the altitude y and the . 
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an&e of descent cp are conti.nuou6 at the break velocity Eb, we have 
two conditions from equations (14) and (17) 

('l)b&$ = @o)b/a 

(y - %)b = (w - %)b 

(58) 

(59) 

for determining the initial conditions Zli G Zlb and Zli* E Zlb' for 
the second portion of descent. Hence the Zi function can be determined 
approximately from equation (C13) of appendix C by substituting ?ii = i?b, 
zi = Zlbt Sbl 'pi = cpb, and CO6 @ = 1. The maximum heating rate occurs 
near the bottom of the first dip after the break, and can be obtained 
from equation (C24) in appendix C with the 6ame substitutions. The total 
heat absorbed in this dip can be obtained from equation (C25). 

As an example let us consider the case of a large drag device 
((W/CQA)l >> (W/C!@)o) jettisoned at a velocity Eb during entry from 
a decaying orbit. In order to minimize the peak heating aSter jettisoning, 
as well as minimize the total heat absorbed during the skip, a value 
L/D E 0.7 is selected. Curves showing the resulting values fog maximum 
heating rate -Q after jettisoning , and total heat absorbed &I during 
the first skip, are presented in figure 23 as a function of the break 
velocity Eb. We see that a large drag device carried down to rb = 0.4, 
for example, would have a maximum heating rate about l/4 of that for the 
sane vehicle with no drag device. 

It may be noted that the deceleration history for a drag device 
jettisoned at iTb = 0.4, for example, is essentially the same as the 
acceleration history investigated in the human centrifuge tests of refer- 
ence 18. The select individuals for these centrifuge tests did not 
blackout (or grayout, or even get dizzy) during the runs. They were able 
to perform continuslly simple dual control operations even when the accel- 
eration dropped suddenly from about 8g to about 2g. 

Comparison of Several Types of Entry With Ei = 1 

It is interesting to compare the relative magnitude of aerodynamic 
heating for the several types of entry discussed. The dimenSiOnle6S 
maximum heating rate -?j& and the dimensionless total heat absorbed G 
are used for this comparison. They would be proportional to the actual 
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rate and the total heat absorbed for vehicles of the same size 
and WCfi. The table which follows summarizes these quantities for 
seven different type6 of entry, all starting with Ei = 1. 

Type of entry 

Near optimum glide, for 
lll3Jlimum & (q = 0) 

L/D 

0.7 

Near optimum ripple for 
minimum h (-cpi = 0.5O) 

.‘I 

Near optimum glide, for 
minimum Q(cpi = 0) 

-. 5 

Near optimum first skip 
for minimum Q 

-7 

Nonlifting (Cpi = 0) 

Nonlifting, from deflected 
orbit with -cpi = 2O 

0 

0 

Composite, large drag device 0 for 7i > 0.4 
jettisoned at Eb = 0.4 0.7 for E < 0.4 

-%ax B 
for ii1 =O.% 

0.084 3.0 

.083 2.9 

.15(-(pi = 2O) 090 

.22 1.4 

027 l 93 
- 

II 
.02 .16 

- 
In comparing these values it should be remembered that the actual quanti- 
ties of interest for a given W/A are &/fi and q/a, and that 
nonlifting vehicles are placed at a sma&l disadvantage in the table 
because they presumably can be designed with.samewhat higher values of 
CD than lifting vehicles. It is noted that the total heat absorbed in 
the case of the skip vehicle, corresponds only to the first skip. Pre- 
sumably this is all that should be considered if the vehicle is designed, 
as suggested by Ferri (ref. 7), to radiate essentially ell of the heat 
'absorbed after each skip. 

Atmosphere Brsking 

During entry of a planet's atmosphere from space at near escape 
velocity, possibly severe deceleration end heating problems can occur 
during the process of passing through an outer segment of the atmosphere. 
The closer a pass is made to a planet surface, the greater is the braking 
action, the greater the deceleration, and the greater the rate of aero- 
dynamic heating. The Z function6 for four different entry histories of 
nonlifting vehicles starting with escape velocity &ii = 1.4) have already -. 
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been presented in figure 7. These functions apply to any planet. They 
are based on the assumption that after the initial pass no further control 
of the vehicle is exercised. 

Entry (a) is initiated with 3O(iiZ),, = 0.46 during the first pass 
(0.~ g msximum deceleration for earth) and corresponds to a dFmensionle6s 
peak heating rate of -T&sx = 0.24 at E = 1.38. The successive peaks 
correspond to m&x progressively less, while the seventh pass, which 
start6 from E = 1.08 and completes the entry, COrre6pOnd6 to Fms,x = 0.20. 
As might be expected this is not far from the value 0.22 corresponding to 
orbital decay from iii = 1 with L/D = 0. Since &x is a measure of 
the msxFmum temperature experienced by a radiation-cooled vehicle, it 
follows that entry of such a vehicle could be completed on the seventh 
pass, without the temperature during any of the atmosphere braking passes 
exceeding appreciably that experienced during orbital decay. 

Entry (b) in figure 7 is initiated tith 30(Z)- = 1.65 in t&e first 
pass during which an emount of heat is absorbed corresponding to Q = 1.5. 
This heat could be radiated to space before the second pas6 is made in 
which an additional amount G = 1.4 is absorbed. The third pass starts 
from Ti = 1.09 and completes the entry with G = 1.7. These values are 
not far from the value 
L/D = 0. 

q = X.4 corresponding to orbital decay with 
Since a is a mea6ure of the total heat absorbed by a heat- 

sink vehicle, it follows that such a vehicle could complete an entry on 
the third pass without absorbing much more heat during each of the two 
atmosphere braking passes than that absorbed during orbital decay. 

Entries (c) and (d) in figure 7 are completed in a s5ngl.e pas6 and 
both lose an smountof kinetic energy (1/2)m(1.4G)2 = mgr. They absorb 
a quantity of heat corresponding to q = 2.9 and z = 2.1, respectively, 
and experience maximum heating rates corresponding to -?&ax = 0.s and 
T-= 0.73, respectively. The total lsminar heat absorbed by (d) is 
less than (c), even though the maximum heating rate is greater, because 
entry (d) corresponds to a closer pass to the planet surface for which 
the heat is taken aboard, on the average, at lower altitudes where the 
friction coefficients are lower (see eq. (57)). 

In addition to the four Z functions just discussed, a number of 
Z functions (not presented) have been computed for lifting vehicles 
undergoing single atmosphere braking passes in which the entering velocity 
IS iii and the exit velocity is -i&. Re6IiLtS are presented in figure 24 
for iii = 1.4 and in figure 25 for Ei = 1.2. In each figure curves are 
presented for the maximum value of horizontal deceleration 30(a)-, the 
dimensionless maximum l-+nar heating rate -?jmsx, and the dimensionless 
lsminar heat absorbed Q during the single pass. The curves are labeled 
as to the L/D values corresponding to earth; they also csn be applied 
to other planets by recalling that a given value of L/D on Earth is 
equivalent to a value (gr)@ -Ii2 times as much on another planet. 
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An interesting feature of these results for single atmosphere brakings 
is that for a given loss in kinetic energy (given Gx), they exhibit the 
opposite variation with L/D from that previously found for orbital 
decay. Thus, an increase in L/D decreases the maximum deceleration for 
orbital decay but increases it for atmosphere braking; an increase in 
L/D decreases the heating rate -&sx for orbital decay but increases it 
for atmosphere braking; an increase in L/D increases the heat absorbed 
G for orbital decay but decreaees it for atmosphere braking. From a 
mathmtical viewpoint the reason for this contrasting behavior is that 
the gravity minus centrifugal force term (1 - G2)m in the basic differ- 
ential equation changes algebraic sign at ii: = 1. From a physical view- 
point, the effect of L/D on atmosphere brahing can be understood by - 
noting that in order to lose the same amount of kinetic energy, a lifting 
vehicle must pass closer to the surface than a nonlifting one. Hence at 
the lower altitude the deceleration and rate of heating of the lifting 
vehicle are greater, while the friction coefficients are smaller and hence 
the heat absorbed for a given loss in kinetic energy is smaller (see 
eq. (57W 

A plot of the maximum surface temperature parameter 
Twse1/4/(W/C~)1~8 as a function of the maximum deceleration in Earth 

I 

g's is presented in figure 26 for atmosphere braking in various planets 
with L/D = 0. These curves are for a Single pass Starting with c-j, = 1.4. __ 
It is seen that in the earth's atmosphere, for exsmple, the maximum decel- 

1 

eration that can be experienced in a single pass and still enable the - .- 
vehicle to exit from the atmosphere at some velocity -%x >l, is about 
3*%. Sf the nonlifting vehicle attempts to decelerate more than this 
by passing closer to the surface, then before it exits from the atmosphere, --. 
the velocity is reduced to E = 1 at some point within the atmosphere and 
the vehicle completes entry in a single passexperiencing at least 7.24. --- 
deceleration in the process. Any pass still~~loser to the surface only 
increases further the maximum deceleration and temperature. When the 
maximum deceleration during a single pass jmps discontinuously from 3.5g 
to 7.2g, the corresponding maximum temperature does not jump because the 
maximum temperature already has been experienced before 7i = 1 was reached. 
The limiting maximum deceleration for atmosphere braking in Mars is seen 
to be much less (0.7 Earth g), and for Jupiter much more than for Earth; 

: 

A companion plot to -figure 26, only for the lsminar heat absorbed 
per unit area in a single pass , is presented~in figure 27: These &irveh 
also are for L/D = 0 and ci = 1.4. In this case, the heat absorbed 
increases discontinuously when the maximum deceleration increases discoti- 
tinuously (from 3.5g to 7.2g for Earth) because of the additional loss 
in kinetic energy. Any pass still closer to the surface increases the 
deceleration but decreases the laminar heat absorbed. This decrease 
exists because, for a given loss in kinetic energy, any pass taking on 
its heat at lower altitudes will have smeller laminar friction coeffi- 
cients, and hence less total heat absorbed (see eq. (57)). 
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CONCLUDING REMARKS 
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An approximate analytical solution for the motion and aerodynamic 
heating of a lifting vehicle entering a planetary atmosphere has been 
obtained by disregarding two relatively small terms in the complete motion 
equation6, and then introducing a mathematical transformation which reduces 
the pair of motion equations to a single, ordinary, nonlinear differential 
equation. Relatively few solutions to this differential equation provide 
quite general results inasmuch as the basic equation is independent of 
the physical characteristics of a vehicle, as well as independent of the 
sea-level characteristics of an atmosphere. The solution6 apply to any 
exponential planetary atmosphere. 

Certati asymptotic solutions in closed form result from a process of 
truncating various combinations of terms from the basic nonlinear differ- 
ential equation. The aggregate of terms represents vertical acceleration, 
vertical component of drag force, gravity force, centrifugal force, and 
aerodynamic lift force. This truncation procedure yields an asymptotic 
solution for ballistic vehicles entering at relatively steep angles of 
descent (which solution is identical to that of Allen and Eggers), an 
asymptotic solution for glide vehicles of relatively large lift-drag ratio, 
and a 6olution for skip vehicles. 

Comparison of the present solution for an ideslized exponential. 
atmosphere with digital computing-machine results for a standard atmos- 
phere reveals difference6 the order of about SO percent. These rela- 
tively smsll differences are due primarily to the variations in atmospheric 
temperature with altitude in the standard atmosphere. The present analytic 
solution enables corrections readily to be made in order to yield result6 
applicable to any standard atmosphere, or to an atmosphere which has 
variations in temperature with season or with latitude. 

Maximum deceleration during entry into an exponential atmosphere 
from a decaying orbit does not depend on the vehicle weight, shape, or 
dimensions; it occurs at a velocity of about 0.4 of orbital velocity, 
and is much less for lift-drag ratios as small as a few tenths than for 
a lift-drag ratio of zero. Even for nonlifting vehicles, though, the 
decelerations are within human tolerance for Earth and Venus, and far 
below for Mars. Manned entry into Jupiter would require a lifting vehicle 
in order to avoid excessive decelerations. 

For vehicles entering from a decaying orbit with aerodynamic Uft, 
the maximum heating rate depends strongly on the vehicle weight, shape, 
and dimensions through the parameter W/C!DA; maximum heating occurs at a 
velocity of about 0.8 of orbital velocity, and, for any given 1oaaFng 
W/A, is mintium for entry at C~. This correspond6 for common shapes 
to optimum L/D ratios between about 0.5 and 1.0. Recause of the 
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coupling between CD and L/D for any aerodynamic shape, the use of a 
near optimum L/D can reduce the maximum heating rate to no more than 
about one-half that for a nonlifting vehicle. 

The laminsr heating rate varies directly as Jm; hence, by using 
a drag device to increase markedly CDA, such as a drag parachute or flare, 
much larger reductions in heating rate are possible than through the use 
of a trimmed lifting vehicle. 

The total heat absorbed during entry from a decaying orbit increases 
rapidly with lift-drag ratio for vehicles with positive lift. It is a 
minimum for lift-drag ratios near about -0.5, but these negative lifts~ 
result in excessive decelerations for manned entry into the earth's 
atmosphere; hence the practical optimum for-minimizing the total heat 
absorbed in orbitsl-decay entry of a manned vehicle is near a lift-drag 
ratio of zero. The total lsminar heat absorbed, like the laminar heating 
rate, varies directly as ,,//. 

By inducing entry at a sizable initial angle of descent, the tot6.l 
heat absorbed for laminar convection can be reduced substantislly. The 
limit of human tolerance to deceleration stress is closely approached for 
nonlifting vehicles entering the earth's atmosphere at an initial descent 
angle of about 3', under which conditions the total heat absorbed is 0.6 
of that for a decaying orbit having zero initial angle of descent, while 
the decelerations and the maximum heating rate are correspondingly 
increased. However, if a vehicle with small aerodynamic lift (say, 
L/D < 0.7, approximately) enters with a smsll. initial angle, the trajectory 
is a rippling descent which can have a slightly lower maximum heating rate 
as well as smaller total heat absorbed than for gliding entry from a 
decaying orbit. 

The total heat absorbed during the first skip of a lifting vehicle 
entering at a sizable initial angle of descent, is essentially independent 
of both the angle of descent and the velocity of exit from the skip. It 
is a minimum for entry at C~ (lift-drag ratios near 0.7). For a given 
W/C!DA, this minimum total heat absorbed during the first skip is roughly 
the same as that absorbed during the entry of a nonlifting vehicle enter- 
ing at an initial angle of descent of about 2'. 

In the process of atmosphere braking for stepwise slowing a space 
vehicle from near escape velocity to circular orbital velocity, the 
effects of L/D on peak deceleration, on maximum heating rate, and on 
total heat absorbed are the opposite to the corresponding effects in the 
process of orbital-decay entry. For example, an increase in L/D with a 
given CD increases the maximum heating rate in atmosphere braking, but 
decrease6 it in orbital decay. For nonlifting vehicles starting with 
escape velocity and employing atmosphere braking, entry to a planet sur- 
face can be completed on the third pass without the total heat absorbed - 
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in any pass exceeding that absorbed for orbital decay, and can be 
completed on the seventh pass without the maxImum rate of heating exceed- 
ing that for orbital decay. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Apr. 9, 19% 
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APPENDMA 

CHEK!K ON APPROXIMATIONS MADE IN ANALYSIS 

The basic approximation (a) of the analysis, as represented by 
equation (8), can be expressed fairly simply in terms of the transformed 
variable Z and the angle of descent .- 

- 

Idr/rl IF(dy/dt)f ff/sti cpI << 1 
ldu/u( = Ir(dTi/dt)l = @Z 

Inasmuch as Z/E - P,, this shows that approximation (a) cannot be valid 
at very high altitudes which are represented by a small neighborhood near 
Wj,Td,Z)= 0. In figures 28(a) and 28(b), curves of the ratio 

du u are shown for lifting entry into the earth's atmosphere 
from decsying orbits and for nonlifting entry from deflected orbits with ' : 
various initial angles 'pi. It is evident that in the regions near peak 
heating (ii B 0.8) and near peak deceleration (TT g 0.3 to 0.5) the basic 
approximation should introduce errors the order of only 1 percent. As a 
vehicle initially enters the atmosphere, however, the decelerations are 
very small and the errors introduced are larger. As a general rule, 
approximation (a) is valid for engineering calculations once the air 
drag has reduced the velocity by about one-half of one percent (see -7. m 
appendix B). Approximation (b), that (L/D)ltsn cpf<< 1 likewise is a 
valid one for heat transfer and deceleration calculations of vehicles 
with zero or positive lift entering from decaying orbits. As figure 28(c) 
illustrates, approximation (b) may result in substantial errors near 
maximum deceleration for vehicles having negative lift, but still results 
in reasonably small errors near peak heating of such vehicles. 
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APPENBIXB 

MATC!HINGF'BESENTSOLUTIONTO KEPLEBIANEXIJFSE 

47 

. 

Let us assume that a retrorocket force, or some other force, has 
deflected sn orbit- vehicle into a new Keplerian ellipse which, in the 
absence of drag, would intersect the planet surface at some angle 'po. 
A "zeroth order*' approximation would be to use this angle in the present 
solution as the initial sngle cpl for the entry. This would be suffi- 
ciently accurate for descent angles greater than a few degrees, but for 
very smsll angles of descent a more accurate matching of the present 
solution to the Keplerian ellipse may be desirable. 

Since the present solution assumes that Idr/rl<<ldu/uf whereas the 
conservation of angular momentum requires that dr/r = -du/u outside 
the atmosphere, it seems reasonable to select the point of matching where 
the ratio (dr/r)/(du/u) i 8 some value less than unity. Let the descent 
angle at the point of match- be (pm, and the velocity be iim. Let us 
confine our attention to a smsll region near matching, where the density 
is very low, the aercd.ynsmic forces are very small, snd the flight path 
is only slightly curved. We represent the Z function in this region 
by the approximation ZI from equation (40) for constant angle of 
descent, namely, 

Since - 
7 

is only slightly less than Tit we approximate 
(T&j - Ei /Tit. 

2n (q&f ) by 
Eence from equation (22), it follows that at the matching 

point the- ratio & of terms discarded 

- =.dr/r - _ 'rn 
i&sin cpm 

du/u dJ-m 

For Earth pr = 900, so that & = 1 at 

to terms retained is 

(Bl) 

T& = O-999 iTi> Pm = 0.2 at 
iim = 0.995 Tq, and Frn = 0.1 at -k = 0.99 iii. Thus, it would be reason- 
able,to match the present solution with a Keplerian ellipse at some 
velocity in the rsnge, say, TT 

t 
= 0.995 Tii to -iX = 0.99 ai. The density 

pm at the matching altitude from the defining equation (14) for Z 
and from equation (Bl)) can be determined from 

(B2) 

&=2& 
( > 

$ (-sin cp,> (33) 
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. 
or, from h we can determine the-altitude ym and hence the corre- 
spending vs3.ue of cpm from the Keplerikn ellipse at this sltitude. The 
value of cpm so determined would be the vslue of qi which closely 
matches the present solution for the entry motion. 

. 

An equivalent way of matching would be to select first arbitrarily 
various altitudes yl, y2, ys, . . . and corresponding densities 
P1r P2> Pm ' l l * From the Keplerian elli-pse the slightly different 
sngles cply CP2t cp,, l l l 

could be determined, and by substitution of 
these into equathn (B3) in place of qo, the respective values (m/QA),, 
WDN,, l l l 

which would bring about proper matching for a given 
value of Frn (say, 0.1) could be computed. Interpolation would yield 
the matching angle (pm, and the matching altitude ym for any desired 
value of m/t&A. 
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APPENDIXC 

DEK!3LOPMENT OF SOME! AppROXIMA!lE SOLUTIONS 

The first approximate solution is that for entry of a nonlifting 
vehicle along a spiral path which makes a constant angle ?JT with respect 
to the local horizontal direction. For this first s-pecisl case we desig- 
nate the Z function by 21, and see from the right members of qua- 
tion (19) that 

& (sin cp) = 0 = Tizf - fi sin qj 

or, sfter one integration, 

ZI' = 4jE sin q 2n E + constant (Cl) 

The integration constant can be evaluated in terms of the initial veloc- 
ity iii and the angle ?jT, to yield after one more titegration for entry 
from high altitudes (Zi = 0), 

ZI 
-ii sin q7 

= Ins= w-EC0 ,-By 
Ui 2@ sin q (c2) 

from which it follows that the dimensionless laminsr heating rate 
s/2 

q1 E E ZI 
112 

has a maximum value 

Q- = 0.247 iIi3(pr)"*Jm cc31 

and the dimensionless total heat absorbed from iT = Et to Ti = 0 is 
evaluated by noting that the integral of equation (39b) is proportional 
to r(1/2) = k/q. 

(Q) = ($J = 
(f3r)1’4GT6J 

This solution for ZI corresponds to setting the left members of 
equation (2l) to zero. In order that the right members of equation (21a) 
also vsnish, we see from equation (C2) that this special solution can be 
realized in two ways: (1) by maintaining a true spiral path through pro- 
gramming the lift with velocity in the very specisl way such that at sll 
points 

L -= 0 - E2)cos q? 
D Wl3r)sti v Zn(Ti/TijJ cc51 
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or (2) by entering with a nonlifting vehicle along such a steep path that 
the gravity forces minus the centrifugal forces are negligible compared 
to the vertical component of drag force (this--yields essentially a 
straight-line trajectory). Case (1) of spiral trajectories with pro- 
grammed lift, is not easily realized in practice, but case (2) represents 
exactly the physical situation considered by Allen and Eggers (ref. 1) 
for their solution to the problem of ballistic entry. Hence, it should 
not be surprising that equation (C2) is identical to their solution. 
This solution for nonlifting vehicles at constant cp does not depart 
significantly from the complete solutions near peak heating @i/Q. s 0.8) 
except for initial descent angles less than a few degrees, and near maxi- 
mum deceleration 
less than about 5 6 

ii/Tii 2 0.4 to 0.6) except for initisl descent angles 
. 

.- 
- - 

As a second s-psi4 case, we consider smoothly gliding, hypersonic 
flight (Ti near 1) with a large L/D and at sufficiently small descent 
angles that cos cp g 1 and sin cp g cp<<L/D. Under these conditions the 
left-hand terms of -equation (21a) involving the normal deceleration and 
the vertical component of drag force can be disregarded. The right mem- 
bers yield for the special function .ZII representing balance between 
gravity, centrifugal, and lift forces, -- - 

z** = 1 
- u2 

i-L.6 (L/D) 
(~6) 

. 
The flight-path angle is obtained from equation (17) by differentiating 
equation (~6) 

-q = 
PIT~:L,D) (c7) - 

This particular solution is the s&me as the solution for gliding flight 
orginslly given by Siinger (refs. 2 and 3) for which the aerodynamic heat- 
ing problems have been studied by Eggers, Allen, and Neice (ref. 4). 
This special solution is quite good for L/D ratios greater than about 1 
(for Earth) and hence is adequate for most glide vehicle analysis. It 
cannot be applied, however, to entries with other than zero initial angle, 
inasmuch as extremely small initial angles of. descent will result in a 
skipping trajectory for which the vertical acceleration term is not small 
compared to the lift force. For this gliding solution ZII the maximum 

heating rate proportional to -?&ax = (u -= 12Z112 hlax occurs at ii = JqY 
with 

E**),, = ’ 
2 

36 (Pr)1'4& 
(~8) 

c 

the dimensionless function proportional to the total heat absorbed is - 
. 
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and the range function is 
-. 

41 L u= E m 
-=Do 1-z” r s 

as obtained in reference 4. 

As a third special case, we consider entry with lift slang a trajec- 
tory wherein the gravity minus centrifugal force is relatively small (see 
eq. (2la)). A skip vehicle, for exsmple, would fall in this category. 
In this case the flight path is determined primarily by a balance between 
the normal acceleration term TiZ**, the lift term fi(L/D)co&q, and the 
vertical drag component. The trajectory is, by assumption, influenced 
only secondarily by the gravity minus centrifugal force term 
(1 - ~2)cos~/(EZ); h ence we may render the basic differential equation 
linear by supposing that Z in the denominator of this nonlinear term 
be approximated a priori by some Z function obtained either by neglect- 
ing this nonlinear term or obtained in some other way such as by expand- 
ing Z about Tii. By writing cos @ as the "average" value of co8 cp 
for the flight path according to the theorem of the mean, we have, after 
one quadrature, 

dz z 
ii 

---= 
dii ii 

cosq 
s ui 

s da _ COST* $ 2n &+ constant 

at Ti = Tii; equation (17) shows that (dZ/diT) - (Z/E) = G sin 'pi hence 
the descent angle is given by 

and the Z function is obtained by solving the first-order 
equation (Cll), noting that l/Ti is an integrating factor, 

(cm 

differential 

+& Sin 

(c13) 
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By disregarding the gravity minus centrifugal force integral, we obtain 
a special function ZIII representing balance between norm&, acceleration, 
vertical drag component, and lift force, 

ZIII =.$fi 
[ 

ii 
i.i 

sin cpi2n - - 
iii 

z$zQ2n2;] 

and 

sin cp = sin cpi - COS"~ $ 
0 

n z 

(Cl4 1 

(c15) 

These last two equations for L/D = 0 reduce to equation (C2). If 
desired, we could substitute ZIII (or some other initial estimate of Z) 
into the denominator of the integrand in equation (Cl3), thus obtaining 
a correction term for the gravity minus centrifugal force term. The suc- 
cess of such a method would depend upon the accuracy and simplicity of 
the initial estimate. 

To illustrate one application of the s-pecis.l solution ZIII given 
by equation (Cl&), we consider the first skip only of a lifting vehicle 
entering.the atmosphere at a small angle Cpi (cos cpi g 1) and at orbital 
velocity (iii = 1). The first skip is generally the most severe from the 
heat-transfer viewpoint. We have for Zi = 0, 

zIII - 
iF 4 r cpi2n ii - -& 255 

> (~16 > 
- 

which-can be substituted.into the integrand of equation (C13) to yield an 
expression.for the gravity minus centrifugal force term. We notice first, 
though, that by definition (ZIII/a) - ooo returns to its -small initial 
value Zi whenever..the vehicle.returns to the initial altitude p-. At 
the end of the- first skip the velo@.ty is reduced to some value E-J-II, 
such that 

2% 
2n(EIII), = - 

L/D 

in accordance with the results of reference 4. This is the velocity at 
the end of the dip. Since we are considering small angles only, 
-2cpi/(L/D) P 1 - TiIIIe, and we may substitute 2n E E ii - 1 in equa- 
tion ~16 for the purpose of evaluating the double integral of equa- 

l 1 tion Cl3 representing the.gravity minus centrifugal forces. This 

yields a new Z function 

zly (1 - iI) ZIII 
a= YBF (-cpi!: 9.. .; .I-; 

037) 
.... .: .; . . . . ,. .,._ 

E Zi +JjG [cpi2n E - ($j + &J2n%] 
.- 
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The velocity at the end of the dip is given by 

2% 
2n G = (L/D) + (1/2BrCpi) . 

(~18) 

Since fir = 900 for Earth, the correction terml/(&@rcpi) can often be 
disregarded. The path angle is obtained from equation (C15) 

so we see that 

'Pe = 91 -$2nQ= "pi 
l-* 

1+* 
(c20 > 

If 2(L/D)Brcpi >> 1 these equations reduce to results previously obtained 
by Eggers, Allen, and Neice (ref. 4). In particular, for relatively 
large values of (L/D)cpi, the angle leaving the dip is equal but opposite 
to the initial angle cpi of entry, as noted in reference 4. After a 
skip, a period of weightlessness follows at sn essentially constant 
velocity iTe under conditions where the vertical acceleration 
(dv/dt) = g - (T&'/r) 1 s 

At = 2ve/(dV/dt) is 
constant; hence the duration of weightlessness 

At = q(cPe) 
go - k2) 

o=) 

After this period, a second entry occurs at nearly the same angle as the 
first entry, only at the reduced velocity -TT. Themsximumlaminar- 
heating rate occurs near, but not at the bottom of the dip (cp = 0) at 
which point the velocity -i& IS given by In T& = Cpi/(L/D). By substi- 
tuting this into equation (~16) the approximate maximum laminar heating 
rate is then represented by 

. 

& = (ii& 
l/4 5 (-Pi) 

5’2&1’2) = (pr) e - 
zzp 

~ bY4 (-cpi,> 
m for "pi << g 

(c22) 

An interesting result concerns the total heat absorbed in a single 
skip starting from satellite velocity (Tii = 1). The total heat absorbed 
is obtained from equation (39) together with 
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By employing the same approximation 2n Ti Z -1 + ii the integral can be 
evaluated. 

CC23 > 

This is essentially independent of cpi, since (pi/(L/D) for many skip 
vehicles would be small. 

-N Q= r 2Yt 

(WI "'4ZF 
for "pi <<g 

Although the maximum heating rate in a skip is proportional to the initial 
angle of descent vi> the total heat absorbed is essentially independent 
of both the_initial angle (Pi and the exit velocity Tie of the skip. 
Since Q u Q/G, we see that Q N l/a., which means that the least heat 
is absorbed by skipping at C&msx. For inclined flat surfaces in hyper- 
sonic flow, simple Newtonian theory yields Lo = 0.77 at an angle of 
attack of 55’, at which angle L/D = 0.n. Hence 

(a) tin Q = fi d(Pr)"4m = 0.96 
. 

This value is compared elsewhere in the DISCUSSION with corresponding 
values of q for other types of entry. 

If a skip vehicle does not enter initially at orbital velocity, but 
at some different value Ei, then the corresponding equations with gravity 
and centrifugal forces neglected indicate the bottom of the dip to be at 
a velocity Tim given by 2n(&&i) = Cpi/(L/D). At this point the heating 
rate is represented by - 

Tm = (Pd 1f4- 3 L/D hii) Ui e zi$ 
The exit of the skip occurs at a velocity i& given by 

2n@&i > = 2cpi/(L/D) 

The dimensionless total heat absorbed is approximately 

(~24 1 

CC25 > 
. 
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APPENDIX D 
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INTEGRATION OF BASIC NORLIREAR EQUATION 

Many numerical methods could be used to compute stepwise a z func- 
tion from a nonlinear equation such as 

izz” -Z’+$ l-3 
Ez cos4cp - fi k co&p @la> 

where Z’ - G =,@ sin cp. A study h as not been made of the best way to 

integrate such an equation, or of whether or not an alternate form of this 
equation, such as 

where F=Z/EidEF'=~sincp, may be preferable for purposes of 
integration. The particular method employed, while probably not extremely 
accurate, is simple in the sense that it involves merely the repetition 
of a large number of identical operations. Suppose we know at some ini- 
tial point En the values of Zn and Zn'. Then from the differential 
equation we have for the second derivative (with COB cp set equal to 
unity for purposes of simplicity in illustrating the method), 

and for the third derivative 

Hence a Taylor expansion for Zn+, and Zn+=' at the next point ri,,, 
yields 
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while the above equations (D2) and (D3) yield !&+l" and Zn+l"r when n 
is replaced by n+l in the formulas. Thus the process can be continued. 
For most cases the Z functions are fairly smooth, and the inclusion 
of Z"f is unnecessary in the above procedure if sufficiently small &i 
are used. For the present calculations Z1'l was omitted; Ei = 0.001 was 
employed for Ei = 1, and Ki = 0.002 for Tii + 1.4 and Tii = 1.2. For skip 
vehicles, the Z function can vary quite rapidly and the inclusion 
of Z'" presumably would enable larger increments Xi to be used. 

This particular procedure requires a knowledge of nonzero values 
ZO and Zo' at some initial point To. Hence the first step is taken 
enalytically. For decaying orbits an analytical representation in the 
vicinity of iI % 1, where (1 - iF)/E r 2(1 - a), is 

zo = 2 
J 

2 (1 - QS’2 

Z,’ = - dz (1 - Eo)1'2 (D5) 

(N 

since these yield Zo" = 2(1 - iio)/Zo and correspond to values of both 
Zof and Z&o small compared to Zo" (see eq. (Dl)). Equations (a) 
and (D5) would apply to a lifting vehicle provided (1 - T&) is selected 

small enough so that @ g<< (1 - i&)-1'2. If the L/D ratio is 

large, we can use the ~ function to obtain 

Z,’ = - 1+ G2 
fi (L/D)G2 (D7) 

For re-entry with an initial angle (pi at initial velocity ui we can 
use the ZIII function for the first step, 

zo = 
A- [ 

r ii0 sin cpi2n 6 - 'OF (L) In2 $1 ON 

Z,’ = JE sin ‘pi + $ 
0 

09) 
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Figure l.- Comparison of exponential approxinmtlon titi ARDC model of Earth atmosphere (1956). r" 
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Figure 2.- Dimensionless parameter fl for ARDC model of Earth 
atmosphere. 
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-------Trajectory 

Portion of trajectory over 
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Atmosphere braking 

Figure 3.- Sketches of typical entry trajectories and portions to which 
present analysis applies. 
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0 .2 .4 .6 1.0 

Dimensionless velocity, D = & 

(a) Nonlifting vehicles. 

Figure 4.. Values of Z functions for entry from decaying orbits into 
planetary atmosphere. 
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Dimensionless Vebdty, ii = #c 

(b) Vehicles with L/D > 0. 

Figure 4.- Concluded. 
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Figure 5.- Comparison of Z functions for nonllftlng entry with analysis of Allen and JZggers; G 
% = 0.9 (23ibO fops for earth). ;F -I m 

. 
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(a) Nonlifting vehicles. 

Figure 6.0 ValueS of Z functions for entry from orbital velocity at 
initial angles of descent; Tq = 1. 
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3002 

Dimensionless velocity, Fj 

(b) Vehicles with L/D = 0.25. 

Figure 6.- Continued. 

. 
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Figure 6.- Continued. 
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Hgure 6. - Continued, 
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(d) Vehicles with L/D = 0.7. 
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Dimensionless velocity, 5 

(e) Vehicles with L/D = 1. 

Figure 6.- Concluded. 
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Figucl -e 7.- Values of Z functions for atmosphere braking of nonlifting 
VehiCleSj fii = 1.4. 

Dimensiontess velocity, ii 
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(a) Angle of descent and altitude-velocity trajectory. 

Figure 8.- Comparison of present approximate analysis with more 
machine calculations for ARE model atmsphere. 

exact 
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(b) Deceleration and distance traveled, 

Figure 8.- Concluded. 
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Figure 9.- Example application of present analysis to a model atmosphere, 
and comparison with more exact machine calculations; nonlifting entry 
from decaying orbit. 
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Dimensionless velocity, 5 = 3 

Figure lO.- Effect of lift-drag ratio on deceleration for entry into 
Earth atmosphere from decayfng orbits. 

. 
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Figure IL- Effect of lift-drag ratio on maximum deceleration for entry 
into various planetary atmospheres from decaying orbits. 
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Figure 12.- Comparison of decelerations and duration for entry into 
various planetary atmospheres from decaying orbits. 
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Figure 13.- Reynolds number at peak heating for entry from decaying orbits 
into Earth atmosphere. 
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Dimensionless velocity, 5 

Figure lb.- EXfect of lift-drag ratio on lsminar heating rate for entry 
from decaying orbits. - . 
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Figure 15.- Effect of lift-drag ratio on maximum lazninar heating rate at 
stagnation point for entry from decaying orbits. 
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Figure 16.- f4sxh.m radiation-equillbrlm temperature at ladnar stagnation point for entry from 
decaying orbits into Earth atmosphere. 
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Figure 17.- E%aximm surface temperature for entry into various planets 
from decaying orbits (CL = 1, cpi = 0). 
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Figure 18.- Effect of lift-drag ratio on total heat absorbed during entry 
from decaying orbits into Earth atmosphere. . 
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Figure 

-2 0 2 3 
Lift-drag ratio, b 

from lg.- Total heat absorbed during entry into various planets 
decaying orbits (Et = 1, Cpi = 0). 
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Figure 20.- Continued. 
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Figure 20.- Concluded. 
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Figure 21.- Reynolds nuniber at peak heating for nonlifting entry from 
deflected orbits into Earth atmosphere. 
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(a) MaxFmum laminar heating rate. 

NACA TN 4276 

Figure 22.- Effect of initial angle of elitry on laminar aerodynamic 
heating and range of lifting vehicles. 
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(b) Total laminar heat absorbed from a = 0.99 to Tl 2 0. 

Figure 22.- Continued. 



NACA TN 

1.6 

1.4 

1.2 

I.0 

.8 

.6 

.4 

.2 

9 
Initial angle, -((PI) Earth,deg 
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Figure 22.- Concluded. 
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JXgure 23.- Dimensionless maximum heating rate and total heat absorbed 
for a composite entry with L/D = 0 down to velocity cb, and then 
L/D = 0.7 thereafter. 
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(a) Maximum horizontal deceleration. 

Figure 24.- Atmosphere braking for single pass starting with $ = 1.4. 
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Figure 24.- Continued. 
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(c) Heat absorbed in single Pass. 

Figure 24.- Conciuded.. " 
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Figure 25.- Atmosphere brahing f'qr sipgle pass starting with ili = 1.2. 
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Figure 25.- Concluded. 
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Figure 26. - Maximum temperature during single atmosphere breg pass 
starting with ;;i = 1.4. 
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Figure 28.- Check on approxhatiotis made in analysis. 


